找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elliptic Boundary Problems for Dirac Operators; Bernhelm Boo?-Bavnbek,Krzysztof P. Wojciechowski Book 1993 Springer Science+Business Media

[復(fù)制鏈接]
樓主: DIGN
31#
發(fā)表于 2025-3-26 21:45:31 | 只看該作者
Spectral Projections of Dirac OperatorsWe account for the construction and the basic properties of the spectral projections associated with the tangential part of a Dirac operator.
32#
發(fā)表于 2025-3-27 01:42:45 | 只看該作者
Pseudo-Differential GrassmanniansThe homotopy groups of the space of pseudo-differential projections with given principal symbol are computed. Criteria are given for two projections belonging to the same connected component.
33#
發(fā)表于 2025-3-27 07:10:51 | 只看該作者
34#
發(fā)表于 2025-3-27 13:28:21 | 只看該作者
35#
發(fā)表于 2025-3-27 14:23:53 | 只看該作者
36#
發(fā)表于 2025-3-27 18:40:14 | 只看該作者
Probability Logic as a Fuzzy Logic or without boundary), we obtain the Clifford bundle .?(.) ? .?(., .). We show that there exists a connection . for any bundle . of complex left modules over .?(.) which is compatible with Clifford multiplication and extends the Riemannian connection on . to S.
37#
發(fā)表于 2025-3-27 22:16:30 | 只看該作者
https://doi.org/10.1007/978-1-4612-3028-1ng even to odd spinors which is exactly the Cauchy-Riemann operator; the Dirac operator on .-valued functions; and the quaternion analogue for the Cauchy-Riemann operator and its expression by Pauli matrices.
38#
發(fā)表于 2025-3-28 05:01:17 | 只看該作者
39#
發(fā)表于 2025-3-28 07:42:31 | 只看該作者
Clifford Bundles and Compatible Connections or without boundary), we obtain the Clifford bundle .?(.) ? .?(., .). We show that there exists a connection . for any bundle . of complex left modules over .?(.) which is compatible with Clifford multiplication and extends the Riemannian connection on . to S.
40#
發(fā)表于 2025-3-28 11:46:31 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-25 03:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
班戈县| 永川市| 丘北县| 南汇区| 惠安县| 鸡西市| 赫章县| 临沧市| 旅游| 故城县| 安图县| 浏阳市| 东乡族自治县| 于都县| 樟树市| 东莞市| 静安区| 玉树县| 资源县| 静安区| 丰顺县| 会同县| 吉木萨尔县| 新沂市| 庄河市| 信阳市| 大厂| 台江县| 含山县| 龙里县| 清镇市| 岳西县| 顺平县| 葫芦岛市| 渝中区| 靖西县| 丹江口市| 荥阳市| 华蓥市| 北川| 西昌市|