找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elements of the Representation Theory of the Jacobi Group; Rolf Berndt,Ralf Schmidt Book 1998 Springer Basel AG 1998 Number theory.algebra

[復(fù)制鏈接]
樓主: cucumber
21#
發(fā)表于 2025-3-25 06:19:30 | 只看該作者
https://doi.org/10.1007/978-3-662-48803-4ers, we are now ready to consider representations of G. (.), where.is the adele ring of some number field. The first section of this chapter collects some basic results about the adelized Jacobi group.
22#
發(fā)表于 2025-3-25 10:11:51 | 只看該作者
The Jacobi Group,ns which may be more or less appropriate for the different parts of the theory. So we will discuss here several realizations and change from one to the other from time to time. To keep track it is helpful to think of the Jacobi group as a certain subgroup of a bigger symplectic group.
23#
發(fā)表于 2025-3-25 11:49:32 | 只看該作者
Local Representations: The Real Case,which is a genuine representation of the metaplectic cover.and may be identified with a projective representation of.If we tensorize.with another genuine representation.of the metaplectic cover Mp.(again to be identified with a projective representation of SL..) we get.a representation of ...with central character., i.e..for all..
24#
發(fā)表于 2025-3-25 18:13:29 | 只看該作者
25#
發(fā)表于 2025-3-25 21:55:52 | 只看該作者
Spherical Representations,e existence of a non-zero vector fixed by the compact-open subgroup ..(.), where (.);is the ring of integers in . For global considerations it is always necessary to have sufficient information on spherical representations.
26#
發(fā)表于 2025-3-26 00:33:54 | 只看該作者
27#
發(fā)表于 2025-3-26 06:39:22 | 只看該作者
The Jacobi Group,ns which may be more or less appropriate for the different parts of the theory. So we will discuss here several realizations and change from one to the other from time to time. To keep track it is helpful to think of the Jacobi group as a certain subgroup of a bigger symplectic group.
28#
發(fā)表于 2025-3-26 09:21:52 | 只看該作者
Basic Representation Theory of the Jacobi Group,n this chapter we will collect some general material, mainly going back to Mackey, which will be useful in all three cases. We start by explaining the induction procedure, and apply it to describe the representations of the Heisenberg group. We treat the representations of the Jacobi group .. with t
29#
發(fā)表于 2025-3-26 14:56:13 | 只看該作者
Local Representations: The Real Case,which is a genuine representation of the metaplectic cover.and may be identified with a projective representation of.If we tensorize.with another genuine representation.of the metaplectic cover Mp.(again to be identified with a projective representation of SL..) we get.a representation of ...with ce
30#
發(fā)表于 2025-3-26 18:04:24 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-28 21:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
汉川市| 孟连| 汶川县| 昭觉县| 河南省| 台山市| 屯留县| 乐亭县| 华池县| 鹤峰县| 本溪| 铜鼓县| 来凤县| 德兴市| 临沭县| 那曲县| 永顺县| 怀化市| 盐城市| 丰原市| 那坡县| 仁寿县| 乌什县| 庄浪县| 睢宁县| 太湖县| 温泉县| 怀柔区| 印江| 扬中市| 卫辉市| 徐水县| 苗栗市| 伽师县| 阳谷县| 沧州市| 丁青县| 迁西县| 浦江县| 阳谷县| 怀安县|