找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elements of Number Theory; John Stillwell Textbook 2003 Springer Science+Business Media New York 2003 Euclidean algorithm.number theory.pr

[復(fù)制鏈接]
樓主: Localized
11#
發(fā)表于 2025-3-23 12:02:49 | 只看該作者
Management von NetzwerkorganisationenFermat’s remarkable discovery that odd primes of the . form . +. are in fact those of the . form 4.+ 1 led to the more general problem of describing primes of the form .+ . for nonsquare integers .. Is it true, for each ., that the primes of the form . + . are those of a finite number of linear forms?
12#
發(fā)表于 2025-3-23 16:13:20 | 只看該作者
Management von Open-Innovation-NetzwerkenThis chapter unites many of the algebraic structures encountered in this book—the integers, the integers mod ., and the various extensions of the integer concept by Gauss, Eisenstein and Hurwitz—in the single abstract concept of ..
13#
發(fā)表于 2025-3-23 18:53:43 | 只看該作者
Definition des Plattformkonzepts,This chapter pursues the idea that a number is known by the set of its multiples, so an “ideal number” is known by a set that . a set of multiples. Such a set . in a ring . is called an ideal, and it is defined by closure under sums (. ∈ . ? . + . ∈ .) and under multiplication by all elements of the ring (. ∈ ., . ∈ . ? . ∈ .).
14#
發(fā)表于 2025-3-24 01:36:38 | 只看該作者
15#
發(fā)表于 2025-3-24 04:01:49 | 只看該作者
16#
發(fā)表于 2025-3-24 09:45:35 | 只看該作者
Congruence arithmetic,Many questions in arithmetic reduce to questions about remainders that can be answered in a systematic manner. For each integer . >1 there is an arithmetic “mod .” that mirrors ordinary arithmetic but is ., since it involves only the . remainders 0, 1, 2,..., .-1 occurring on division by .. Arithmetic mod ., or ., is the subject of this chapter.
17#
發(fā)表于 2025-3-24 13:59:36 | 只看該作者
18#
發(fā)表于 2025-3-24 17:17:34 | 只看該作者
Quadratic integers,Just as Gaussian integers enable the factorization of x. + ., other quadratic expressions in ordinary integer variables are factorized with the help of .. Examples in this chapter are ..
19#
發(fā)表于 2025-3-24 21:32:48 | 只看該作者
20#
發(fā)表于 2025-3-24 23:21:45 | 只看該作者
Quadratic reciprocity,Fermat’s remarkable discovery that odd primes of the . form . +. are in fact those of the . form 4.+ 1 led to the more general problem of describing primes of the form .+ . for nonsquare integers .. Is it true, for each ., that the primes of the form . + . are those of a finite number of linear forms?
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 07:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
贵阳市| 沭阳县| 芦溪县| 吕梁市| 晋城| 横峰县| 介休市| 尤溪县| 英吉沙县| 漳州市| 顺义区| 彭山县| 睢宁县| 汝城县| 岚皋县| 天津市| 云梦县| 锦屏县| 泸定县| 万载县| 武定县| 鸡泽县| 门源| 阳东县| 鹤庆县| 济宁市| 内丘县| 新干县| 榆林市| 松江区| 莎车县| 二连浩特市| 宁河县| 酒泉市| 鄢陵县| 河津市| 山西省| 聊城市| 股票| 潜山县| 龙川县|