找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elements of Noncommutative Geometry; José M. Gracia-Bondía,Joseph C. Várilly,Héctor Fig Textbook 2001 Springer Science+Business Media New

[復(fù)制鏈接]
樓主: 解放
31#
發(fā)表于 2025-3-27 00:13:14 | 只看該作者
32#
發(fā)表于 2025-3-27 01:25:03 | 只看該作者
33#
發(fā)表于 2025-3-27 06:08:14 | 只看該作者
Noncommutative Topology: Spacesangent lines directly; but already for cubic curves it pays to examine first the ideal of all polynomials that vanish on the curve: in this way the study of an algebraic variety (the zero set of a given finite collection of polynomials) is replaced by the study of the corresponding polynomial ideal.
34#
發(fā)表于 2025-3-27 10:25:11 | 只看該作者
35#
發(fā)表于 2025-3-27 17:28:54 | 只看該作者
36#
發(fā)表于 2025-3-27 18:35:47 | 只看該作者
Finite-dimensional Clifford Algebras and Spinorstheir linear-algebraic and Lie-theoretic underpinnings, namely Clifford algebra. We chose not to dispense with it in this book, despite the existence of many excellent treatments, mainly for ease of reference. In particular, the infinitesimal spin representation is needed to deal with the spin conne
37#
發(fā)表于 2025-3-28 00:29:39 | 只看該作者
38#
發(fā)表于 2025-3-28 04:34:24 | 只看該作者
39#
發(fā)表于 2025-3-28 07:18:21 | 只看該作者
Spectral Triplesative geometry: that the structures we call geometrical are at the same time, and perhaps more fundamentally, operator-theoretic in nature. The transition to the noncommutative world entails putting the metric-generating operator front and centre. This modern approach to geometry is played out on a
40#
發(fā)表于 2025-3-28 11:47:34 | 只看該作者
Connes’ Spin Manifold Theoremrmines a unique spin structure on .; and that, among all abstract spin geometries in the sense of Section 10.5, compatible with that structure, the one determined by the Dirac operator is singled out by a variational principle.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 12:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
汉源县| 施甸县| 长沙市| 雷山县| 随州市| 邵阳市| 堆龙德庆县| 灵川县| 德安县| 西青区| 哈巴河县| 监利县| 普格县| 若尔盖县| 米脂县| 永和县| 宝坻区| 桃江县| 泗洪县| 清徐县| 巨鹿县| 楚雄市| 驻马店市| 涟水县| 洛南县| 莱州市| 温泉县| 云梦县| 顺义区| 大渡口区| 永春县| 铜川市| 丰宁| 桦川县| 渑池县| 腾冲县| 眉山市| 沙河市| 汤阴县| 石阡县| 昌平区|