找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elements of Noncommutative Geometry; José M. Gracia-Bondía,Joseph C. Várilly,Héctor Fig Textbook 2001 Springer Science+Business Media New

[復(fù)制鏈接]
樓主: 解放
31#
發(fā)表于 2025-3-27 00:13:14 | 只看該作者
32#
發(fā)表于 2025-3-27 01:25:03 | 只看該作者
33#
發(fā)表于 2025-3-27 06:08:14 | 只看該作者
Noncommutative Topology: Spacesangent lines directly; but already for cubic curves it pays to examine first the ideal of all polynomials that vanish on the curve: in this way the study of an algebraic variety (the zero set of a given finite collection of polynomials) is replaced by the study of the corresponding polynomial ideal.
34#
發(fā)表于 2025-3-27 10:25:11 | 只看該作者
35#
發(fā)表于 2025-3-27 17:28:54 | 只看該作者
36#
發(fā)表于 2025-3-27 18:35:47 | 只看該作者
Finite-dimensional Clifford Algebras and Spinorstheir linear-algebraic and Lie-theoretic underpinnings, namely Clifford algebra. We chose not to dispense with it in this book, despite the existence of many excellent treatments, mainly for ease of reference. In particular, the infinitesimal spin representation is needed to deal with the spin conne
37#
發(fā)表于 2025-3-28 00:29:39 | 只看該作者
38#
發(fā)表于 2025-3-28 04:34:24 | 只看該作者
39#
發(fā)表于 2025-3-28 07:18:21 | 只看該作者
Spectral Triplesative geometry: that the structures we call geometrical are at the same time, and perhaps more fundamentally, operator-theoretic in nature. The transition to the noncommutative world entails putting the metric-generating operator front and centre. This modern approach to geometry is played out on a
40#
發(fā)表于 2025-3-28 11:47:34 | 只看該作者
Connes’ Spin Manifold Theoremrmines a unique spin structure on .; and that, among all abstract spin geometries in the sense of Section 10.5, compatible with that structure, the one determined by the Dirac operator is singled out by a variational principle.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 12:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
镇宁| 吉木乃县| 噶尔县| 通海县| 石楼县| 清苑县| 双城市| 海晏县| 贡山| 保德县| 阿克| 水城县| 德州市| 卓资县| 福安市| 万全县| 三穗县| 吉安县| 游戏| 武定县| 漳州市| 镇江市| 根河市| 安吉县| 刚察县| 庆云县| 仁布县| 肥西县| 新平| 金山区| 喜德县| 庄河市| 仁化县| 梨树县| 临沧市| 屯留县| 布拖县| 维西| 兴化市| 罗田县| 台东市|