找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Integration I; Chapters 1-6 Nicolas Bourbaki Book 2004 Springer-Verlag Berlin Heidelberg 2004 MSC (2000): 28-01, 28Bxx, 46Exx.YellowSale200

[復制鏈接]
查看: 33082|回復: 43
樓主
發(fā)表于 2025-3-21 17:23:02 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Integration I
副標題Chapters 1-6
編輯Nicolas Bourbaki
視頻videohttp://file.papertrans.cn/308/307603/307603.mp4
概述Includes supplementary material:
圖書封面Titlebook: Integration I; Chapters 1-6 Nicolas Bourbaki Book 2004 Springer-Verlag Berlin Heidelberg 2004 MSC (2000): 28-01, 28Bxx, 46Exx.YellowSale200
描述.Intégration. .is the sixth and last of the Books that form the core of the Bourbaki series; it draws abundantly on the preceding five Books, especially?.General Topology. and? .Topological Vector Spaces., making it a culmination of the core six. The power of the tool thus fashioned is strikingly displayed in Chapter II of the author‘s?.Théories Spectrales., an exposition, in a mere 38 pages, of abstract harmonic analysis and the structure of locally compact abelian groups...The present volume comprises Chapters 1-6 in English translation (a second volume will contain the remaining Chapters 7-9). The individual fascicles of the original French edition have been extensively reviewed. Chapters 1-5 received very substantial revisions in a second edition, including changes to some fundamental definitions. Chapters 6-8 are based on the first editions of Chs. 1-5. The English edition has given the author the opportunity tocorrect misprints, update references, clarify the concordance of Chapter 6 with the second editions of Chapters 1-5, and revise the definition of a key concept in Chapter 6 (measurable equivalence relations)..
出版日期Book 2004
關鍵詞MSC (2000): 28-01, 28Bxx, 46Exx; YellowSale2006; integration; measure; Abelian group; boundary element me
版次1
doihttps://doi.org/10.1007/978-3-642-59312-3
isbn_softcover978-3-642-63930-2
isbn_ebook978-3-642-59312-3
copyrightSpringer-Verlag Berlin Heidelberg 2004
The information of publication is updating

書目名稱Integration I影響因子(影響力)




書目名稱Integration I影響因子(影響力)學科排名




書目名稱Integration I網(wǎng)絡公開度




書目名稱Integration I網(wǎng)絡公開度學科排名




書目名稱Integration I被引頻次




書目名稱Integration I被引頻次學科排名




書目名稱Integration I年度引用




書目名稱Integration I年度引用學科排名




書目名稱Integration I讀者反饋




書目名稱Integration I讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 22:16:50 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:23:25 | 只看該作者
地板
發(fā)表于 2025-3-22 08:29:22 | 只看該作者
https://doi.org/10.1007/978-3-663-08705-2aic dual of F′ (the space of all linear forms on F′); F″ is a linear subspace of F′*, and F may be identified (as a vector space without topology) with a linear subspace of F″. We denote by F. the vector space F equipped with the weakened topology cr(F, F′); the qualifiers ‘weak’ and ‘weakly’ refer
5#
發(fā)表于 2025-3-22 09:12:15 | 只看該作者
6#
發(fā)表于 2025-3-22 14:35:55 | 只看該作者
Vectorial integration,aic dual of F′ (the space of all linear forms on F′); F″ is a linear subspace of F′*, and F may be identified (as a vector space without topology) with a linear subspace of F″. We denote by F. the vector space F equipped with the weakened topology cr(F, F′); the qualifiers ‘weak’ and ‘weakly’ refer to this topology.
7#
發(fā)表于 2025-3-22 17:14:42 | 只看該作者
https://doi.org/10.1007/978-1-349-07071-8Let X be a set; in the vector space . of all . numerical functions. defined on X, let P be the set of all positive real-valued functions on X. On the other hand, let . be a numerical function., ., with values ≥ 0, defined on P, such that:
8#
發(fā)表于 2025-3-23 00:10:44 | 只看該作者
9#
發(fā)表于 2025-3-23 02:13:48 | 只看該作者
10#
發(fā)表于 2025-3-23 05:33:53 | 只看該作者
Challenges to Educational Institutions 1.—. X . E . . . ., . . . X . E. . S . X . .(.)=0 . X ? S (in other words, the closure in X of the set of all . ∈ X such that .(.)≠0) . . . Supp(.).
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 00:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
江安县| 天祝| 娄底市| 东阿县| 连城县| 南靖县| 庆元县| 吉安市| 新建县| 沂源县| 遂溪县| 博罗县| 安庆市| 兴隆县| 常熟市| 罗城| 靖边县| 佛教| 扎囊县| 隆回县| 曲周县| 桂东县| 馆陶县| 淮滨县| 读书| 峨眉山市| 滨州市| 翁源县| 武义县| 腾冲县| 兴城市| 易门县| 无锡市| 连江县| 福安市| 安福县| 芜湖县| 嵊州市| 灵石县| 五原县| 临安市|