找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Elements of Homotopy Theory; George W. Whitehead Textbook 1978 The Editor(s) (if applicable) and The Author(s), under exclusive license to

[復(fù)制鏈接]
樓主: mortality
21#
發(fā)表于 2025-3-25 06:15:46 | 只看該作者
22#
發(fā)表于 2025-3-25 09:58:53 | 只看該作者
,The Role of Tomorrow’s Manager,In Chapter V we showed how to use the process of attaching cells to construct CW-complexes with desired properties. In this Chapter we shall exploit this process further, one of our aims being to show how any space can be built up, up to homotopy type, out of Eilenberg-MacLane spaces.
23#
發(fā)表于 2025-3-25 13:33:12 | 只看該作者
24#
發(fā)表于 2025-3-25 19:40:19 | 只看該作者
Postnikov Systems,In Chapter V we showed how to use the process of attaching cells to construct CW-complexes with desired properties. In this Chapter we shall exploit this process further, one of our aims being to show how any space can be built up, up to homotopy type, out of Eilenberg-MacLane spaces.
25#
發(fā)表于 2025-3-25 21:52:01 | 只看該作者
26#
發(fā)表于 2025-3-26 01:44:09 | 只看該作者
27#
發(fā)表于 2025-3-26 07:21:29 | 只看該作者
28#
發(fā)表于 2025-3-26 10:45:25 | 只看該作者
Andrew M. McCosh,Michael S. Scott Mortonin . which end at the base point; then the map .: P’(B) . . defined by . = .(0) is a fibration with . as fibre. The total space P’(.) being acyclic, the boundary operator . is an isomorphism, and the map . induces . the homomorphism
29#
發(fā)表于 2025-3-26 14:51:45 | 只看該作者
Introductory Notions,ns of homotopy theory: extension and lifting problems. The notion of hom-otopy is introduced, and its connection with the above problems discussed. This leads to a formulation of fibrations and cofibrations, which have played such a fundamental role in the development of the subject.
30#
發(fā)表于 2025-3-26 20:05:39 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 04:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
自治县| 邵东县| 绵阳市| 晋州市| 星子县| 玉林市| 珲春市| 乐亭县| 塔河县| 揭阳市| 梓潼县| 万盛区| 海丰县| 英吉沙县| 景东| 成安县| 西宁市| 呈贡县| 独山县| 巴塘县| 白水县| 府谷县| 西昌市| 同江市| 襄垣县| 大竹县| 邵阳市| 怀来县| 贵州省| 和平县| 泾源县| 定南县| 广灵县| 江门市| 偏关县| 黑龙江省| 南昌市| 弥渡县| 清镇市| 宝兴县| 巴青县|