找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elements of Dimensionality Reduction and Manifold Learning; Benyamin Ghojogh,Mark Crowley,Ali Ghodsi Textbook 2023 The Editor(s) (if appli

[復(fù)制鏈接]
查看: 34469|回復(fù): 55
樓主
發(fā)表于 2025-3-21 18:08:11 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Elements of Dimensionality Reduction and Manifold Learning
編輯Benyamin Ghojogh,Mark Crowley,Ali Ghodsi
視頻videohttp://file.papertrans.cn/308/307583/307583.mp4
概述Explains the theory of fundamental algorithms in dimensionality reduction, in a step-by-step and very detailed approach.Useful for anyone who wants to understand the ways to extract, transform, and un
圖書封面Titlebook: Elements of Dimensionality Reduction and Manifold Learning;  Benyamin Ghojogh,Mark Crowley,Ali Ghodsi Textbook 2023 The Editor(s) (if appli
描述Dimensionality reduction, also known as manifold learning, is an area of machine learning used for extracting informative features from data for better representation of data or separation between classes. This book presents a cohesive review of linear and nonlinear dimensionality reduction and manifold learning. Three main aspects of dimensionality reduction are covered: spectral dimensionality reduction, probabilistic dimensionality reduction, and neural network-based dimensionality reduction, which have geometric, probabilistic, and information-theoretic points of view to dimensionality reduction, respectively. The necessary background and preliminaries on linear algebra, optimization, and kernels are also explained to ensure a comprehensive understanding of the algorithms..The tools introduced in this book can be applied to various applications involving feature extraction, image processing, computer vision, and signal processing. This book is applicable to a wide audience who would like to acquire a deep understanding of the various ways to extract, transform, and understand the structure of data. The intended audiences are academics, students, and industry professionals. Acad
出版日期Textbook 2023
關(guān)鍵詞Data Reduction; Data Visualization; Dimensionality Reduction; Feature Extraction; Machine Learning; Manif
版次1
doihttps://doi.org/10.1007/978-3-031-10602-6
isbn_softcover978-3-031-10604-0
isbn_ebook978-3-031-10602-6
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Elements of Dimensionality Reduction and Manifold Learning影響因子(影響力)




書目名稱Elements of Dimensionality Reduction and Manifold Learning影響因子(影響力)學(xué)科排名




書目名稱Elements of Dimensionality Reduction and Manifold Learning網(wǎng)絡(luò)公開度




書目名稱Elements of Dimensionality Reduction and Manifold Learning網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Elements of Dimensionality Reduction and Manifold Learning被引頻次




書目名稱Elements of Dimensionality Reduction and Manifold Learning被引頻次學(xué)科排名




書目名稱Elements of Dimensionality Reduction and Manifold Learning年度引用




書目名稱Elements of Dimensionality Reduction and Manifold Learning年度引用學(xué)科排名




書目名稱Elements of Dimensionality Reduction and Manifold Learning讀者反饋




書目名稱Elements of Dimensionality Reduction and Manifold Learning讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:58:48 | 只看該作者
Introduction, transforms data to another lower-dimensional subspace for better representation of data. This chapter defines dimensionality reduction and enumerates its main categories as an introduction to the next chapters of the book.
板凳
發(fā)表于 2025-3-22 01:50:11 | 只看該作者
o wants to understand the ways to extract, transform, and unDimensionality reduction, also known as manifold learning, is an area of machine learning used for extracting informative features from data for better representation of data or separation between classes. This book presents a cohesive revi
地板
發(fā)表于 2025-3-22 05:50:52 | 只看該作者
5#
發(fā)表于 2025-3-22 11:27:47 | 只看該作者
6#
發(fā)表于 2025-3-22 15:20:48 | 只看該作者
7#
發(fā)表于 2025-3-22 18:33:20 | 只看該作者
8#
發(fā)表于 2025-3-23 00:53:21 | 只看該作者
e who would like to acquire a deep understanding of the various ways to extract, transform, and understand the structure of data. The intended audiences are academics, students, and industry professionals. Acad978-3-031-10604-0978-3-031-10602-6
9#
發(fā)表于 2025-3-23 03:39:03 | 只看該作者
10#
發(fā)表于 2025-3-23 07:13:41 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 01:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
前郭尔| 中西区| 扎赉特旗| 马鞍山市| 高要市| 疏附县| 新巴尔虎左旗| 桐柏县| 临湘市| 始兴县| 新密市| 遂溪县| 东至县| 虎林市| 青龙| 宜君县| 河池市| 苍南县| 满城县| 桑植县| 武宁县| 碌曲县| 洛阳市| 达日县| 清徐县| 塔城市| 峡江县| 宝鸡市| 阳城县| 蒲江县| 博湖县| 融水| 司法| 玉林市| 日土县| 孝义市| 五河县| 罗源县| 句容市| 吉安县| 海安县|