找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Elements of Data Science, Machine Learning, and Artificial Intelligence Using R; Frank Emmert-Streib,Salissou Moutari,Matthias Dehm Textbo

[復(fù)制鏈接]
查看: 46423|回復(fù): 61
樓主
發(fā)表于 2025-3-21 19:06:55 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Elements of Data Science, Machine Learning, and Artificial Intelligence Using R
編輯Frank Emmert-Streib,Salissou Moutari,Matthias Dehm
視頻videohttp://file.papertrans.cn/308/307581/307581.mp4
概述Provides students with tools they need to analyze complex data using methods from data science.Presents the tools students need to analyze data using the R programming language.Includes a full suite o
圖書封面Titlebook: Elements of Data Science, Machine Learning, and Artificial Intelligence Using R;  Frank Emmert-Streib,Salissou Moutari,Matthias Dehm Textbo
描述The textbook provides students with tools they need to analyze complex data using methods from data science, machine learning and artificial intelligence. The authors include both the presentation of methods along with applications using the programming language R, which is the gold standard for analyzing data. The authors cover all three main components of data science: computer science; mathematics and statistics; and domain knowledge. The book presents methods and implementations in R side-by-side, allowing the immediate practical application of the learning concepts. Furthermore, this teaches computational thinking in a natural way. The book includes exercises, case studies, Q&A and examples..
出版日期Textbook 2023
關(guān)鍵詞Data science; Algorithms; data driven sciences; Learning from data; Prediction models; Bayesian analysis
版次1
doihttps://doi.org/10.1007/978-3-031-13339-8
isbn_softcover978-3-031-13341-1
isbn_ebook978-3-031-13339-8
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Elements of Data Science, Machine Learning, and Artificial Intelligence Using R影響因子(影響力)




書目名稱Elements of Data Science, Machine Learning, and Artificial Intelligence Using R影響因子(影響力)學(xué)科排名




書目名稱Elements of Data Science, Machine Learning, and Artificial Intelligence Using R網(wǎng)絡(luò)公開(kāi)度




書目名稱Elements of Data Science, Machine Learning, and Artificial Intelligence Using R網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書目名稱Elements of Data Science, Machine Learning, and Artificial Intelligence Using R被引頻次




書目名稱Elements of Data Science, Machine Learning, and Artificial Intelligence Using R被引頻次學(xué)科排名




書目名稱Elements of Data Science, Machine Learning, and Artificial Intelligence Using R年度引用




書目名稱Elements of Data Science, Machine Learning, and Artificial Intelligence Using R年度引用學(xué)科排名




書目名稱Elements of Data Science, Machine Learning, and Artificial Intelligence Using R讀者反饋




書目名稱Elements of Data Science, Machine Learning, and Artificial Intelligence Using R讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:36:31 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:22:09 | 只看該作者
General Error Measures start by introducing four so-called fundamental errors from which most error measures are derived. Then, we discuss 14 different error measures. Finally, we discuss the evaluation of the outcome of a single method and that of multiple methods, showing that such an evaluation is a complex task that
地板
發(fā)表于 2025-3-22 06:52:06 | 只看該作者
Resampling Methodse different from the other methods presented in this book. As we will see, resampling and subsampling methods allow the generation of “new” data sets from any given data set, which can then be used either for the assessment of a prediction model or for the estimation of parameters.
5#
發(fā)表于 2025-3-22 11:33:40 | 只看該作者
6#
發(fā)表于 2025-3-22 13:31:55 | 只看該作者
Statistical Inferencen reality, a sample of data always has a finite size, any conclusions reached about the population are always uncertain to a degree. The goal of statistics is to quantify the amount of uncertainty around the conclusions that are made based on a sample of data. In general, . is the (systematic) proce
7#
發(fā)表于 2025-3-22 21:04:31 | 只看該作者
8#
發(fā)表于 2025-3-22 21:12:49 | 只看該作者
Dimension Reductiont or non-informative, which generally hinders the ability of most machine learning algorithms to perform efficiently. A common approach to address these issues is to check whether a low-dimensional structure can be detected within these high-dimensional data. If the answer is yes, then we can identi
9#
發(fā)表于 2025-3-23 04:31:10 | 只看該作者
Classificationuss aspects common to general classification methods. This includes an extension of measures for binary decision-making to multi-class classification problems. As we will see, this extension is not trivial, because the contingency table becomes multi-dimensional when conditioned on different classes
10#
發(fā)表于 2025-3-23 06:42:26 | 只看該作者
Hypothesis Testingriginated from statistics, hypothesis testing has complex interdependencies between its procedural components, which makes it hard to thoroughly comprehend. In this chapter, we discuss the underlying logic behind statistical hypothesis testing and the formal meaning of its components and their conne
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 11:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
景谷| 林口县| 海晏县| 驻马店市| 永嘉县| 仁布县| 康马县| 马龙县| 曲阳县| 阿拉尔市| 铜山县| 青岛市| 江门市| 墨竹工卡县| 镇宁| 财经| 张家港市| 平舆县| 湘乡市| 集贤县| 大洼县| 长阳| 昌都县| 定安县| 通城县| 东丰县| 右玉县| 财经| 长汀县| 元江| 来凤县| 彰武县| 威远县| 建德市| 三台县| 宁南县| 革吉县| 峨边| 南宫市| 新安县| 古蔺县|