找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elements of Classical and Quantum Integrable Systems; Gleb Arutyunov Textbook 2019 Springer Nature Switzerland AG 2019 Liouville theory.We

[復制鏈接]
樓主: Indigent
21#
發(fā)表于 2025-3-25 05:37:23 | 只看該作者
22#
發(fā)表于 2025-3-25 10:15:57 | 只看該作者
https://doi.org/10.1007/978-3-662-02480-5er on classical mechanics, we present a modern formulation of the Liouville theorem due to Arnold, discuss the symmetry origin of conservation laws and give a number of representative examples of integrable models. Also, we introduce the main tools for exhibiting and studying classical integrability such as the Lax pair and classical .-matrix.
23#
發(fā)表于 2025-3-25 14:50:23 | 只看該作者
24#
發(fā)表于 2025-3-25 18:21:51 | 只看該作者
Quantum-Mechanical Integrable Systems,the discrete spectrum, we present the common eigenfunctions of commuting quantum integrals in terms of special families of orthogonal polynomials, thereby showing that for these quantum-mechanical models the spectral problem is fully solved.
25#
發(fā)表于 2025-3-25 21:50:03 | 只看該作者
26#
發(fā)表于 2025-3-26 02:24:59 | 只看該作者
27#
發(fā)表于 2025-3-26 05:04:22 | 只看該作者
Elements of Classical and Quantum Integrable Systems
28#
發(fā)表于 2025-3-26 09:03:43 | 只看該作者
Textbook 2019rete examples?of the Calogero-Moser-Sutherland andRuijsenaars-Schneider models, the Heisenberg spin chain and the one-dimensional?Bose gas interacting via a delta-function potential.?This book has intermediate and advanced topics with?details to make them clearly comprehensible..
29#
發(fā)表于 2025-3-26 16:17:40 | 只看該作者
Liouville Integrability,eans of a well-established mathematical procedure. As such, this theorem naturally provides a definition of an integrable system. After a brief reminder on classical mechanics, we present a modern formulation of the Liouville theorem due to Arnold, discuss the symmetry origin of conservation laws an
30#
發(fā)表于 2025-3-26 17:56:30 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 07:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
武夷山市| 互助| 青岛市| 东明县| 卫辉市| 东港市| 巴南区| 桃园县| 宣恩县| 上林县| 康保县| 牙克石市| 平顺县| 承德县| 同心县| 广南县| 隆林| 西城区| 遵义市| 太白县| 通江县| 奉节县| 新乐市| 宾川县| 南充市| 公主岭市| 刚察县| 安远县| 松潘县| 喀什市| 马山县| 华阴市| 台南县| 新化县| 雷州市| 汶上县| 博兴县| 上犹县| 罗田县| 宜都市| 新郑市|