找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elements of Classical and Quantum Integrable Systems; Gleb Arutyunov Textbook 2019 Springer Nature Switzerland AG 2019 Liouville theory.We

[復制鏈接]
樓主: Indigent
21#
發(fā)表于 2025-3-25 05:37:23 | 只看該作者
22#
發(fā)表于 2025-3-25 10:15:57 | 只看該作者
https://doi.org/10.1007/978-3-662-02480-5er on classical mechanics, we present a modern formulation of the Liouville theorem due to Arnold, discuss the symmetry origin of conservation laws and give a number of representative examples of integrable models. Also, we introduce the main tools for exhibiting and studying classical integrability such as the Lax pair and classical .-matrix.
23#
發(fā)表于 2025-3-25 14:50:23 | 只看該作者
24#
發(fā)表于 2025-3-25 18:21:51 | 只看該作者
Quantum-Mechanical Integrable Systems,the discrete spectrum, we present the common eigenfunctions of commuting quantum integrals in terms of special families of orthogonal polynomials, thereby showing that for these quantum-mechanical models the spectral problem is fully solved.
25#
發(fā)表于 2025-3-25 21:50:03 | 只看該作者
26#
發(fā)表于 2025-3-26 02:24:59 | 只看該作者
27#
發(fā)表于 2025-3-26 05:04:22 | 只看該作者
Elements of Classical and Quantum Integrable Systems
28#
發(fā)表于 2025-3-26 09:03:43 | 只看該作者
Textbook 2019rete examples?of the Calogero-Moser-Sutherland andRuijsenaars-Schneider models, the Heisenberg spin chain and the one-dimensional?Bose gas interacting via a delta-function potential.?This book has intermediate and advanced topics with?details to make them clearly comprehensible..
29#
發(fā)表于 2025-3-26 16:17:40 | 只看該作者
Liouville Integrability,eans of a well-established mathematical procedure. As such, this theorem naturally provides a definition of an integrable system. After a brief reminder on classical mechanics, we present a modern formulation of the Liouville theorem due to Arnold, discuss the symmetry origin of conservation laws an
30#
發(fā)表于 2025-3-26 17:56:30 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 07:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
衢州市| 嘉祥县| 泉州市| 武山县| 通城县| 洛阳市| 灵川县| 库尔勒市| 喀喇| 安陆市| 安国市| 昌吉市| 吴堡县| 峡江县| 隆化县| 云梦县| 璧山县| 达拉特旗| 西安市| 新密市| 银川市| 乌拉特中旗| 桂东县| 镇原县| 望奎县| 开平市| 克拉玛依市| 玉树县| 左权县| 张家港市| 旬阳县| 洛扎县| 古交市| 浙江省| 常熟市| 华容县| 泸水县| 龙胜| 保定市| 兰西县| 乌兰浩特市|