找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elements of Applied Bifurcation Theory; Yuri A. Kuznetsov Book 20043rd edition Springer Science+Business Media New York 2004 Mathematica.a

[復制鏈接]
樓主: 精明
11#
發(fā)表于 2025-3-23 11:03:47 | 只看該作者
https://doi.org/10.1007/978-981-19-1794-3 routines like those for solving linear systems, finding eigenvectors and eigenvalues, and performing numerical integration of ODEs are known to the reader. Instead we focus on algorithms that are more specific to bifurcation analysis, specifically those for the location of equilibria (fixed points)
12#
發(fā)表于 2025-3-23 14:48:01 | 只看該作者
13#
發(fā)表于 2025-3-23 20:48:01 | 只看該作者
14#
發(fā)表于 2025-3-24 00:27:02 | 只看該作者
15#
發(fā)表于 2025-3-24 05:25:19 | 只看該作者
16#
發(fā)表于 2025-3-24 10:13:57 | 只看該作者
17#
發(fā)表于 2025-3-24 14:09:36 | 只看該作者
Bifurcations of Orbits Homoclinic and Heteroclinic to Hyperbolic Equilibria, dynamical systems. First we consider in detail two- and three-dimensional cases where geometrical intuition can be fully exploited. Then we show how to reduce generic .-dimensional cases to the considered ones plus a four-dimensional case treated in Appendix A.
18#
發(fā)表于 2025-3-24 18:55:21 | 只看該作者
19#
發(fā)表于 2025-3-24 20:09:24 | 只看該作者
Other One-Parameter Bifurcations in Continuous-Time Dynamical Systems,urcations in symmetric systems, which are those systems that are invariant with respect to the representation of a certain symmetry group. After giving some general results on bifurcations in such systems, we restrict our attention to bifurcations of equilibria and cycles in the presence of the simp
20#
發(fā)表于 2025-3-24 23:32:57 | 只看該作者
Numerical Analysis of Bifurcations,. Appendix B gives some background information on the bialternate matrix product used to detect Hopf and Neimark-Sacker bifurcations. Appendix C presents numerical methods for detection of higher-order homoclinic bifurcations. The bibliographical notes in Appendix D include references to standard no
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 23:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
咸宁市| 莱阳市| 平江县| 五原县| 隆林| 麻城市| 娄底市| 马公市| 兴和县| 江阴市| 纳雍县| 洛川县| 花垣县| 丰城市| 海林市| 松原市| 洛川县| 开化县| 永和县| 仁寿县| 浮梁县| 连山| 新郑市| 子长县| 武强县| 栖霞市| 嘉义县| 霍邱县| 丰县| 当涂县| 西乡县| 寿阳县| 新建县| 吉安县| 长葛市| 余庆县| 喜德县| 日土县| 泾源县| 日照市| 微山县|