找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elemente der Gruppentheorie; Rudolf Schnabel Textbook 1984 Springer Fachmedien Wiesbaden 1984 Abelsche Gruppe.Algebra.Gruppentheorie.Logik

[復(fù)制鏈接]
樓主: Exaltation
11#
發(fā)表于 2025-3-23 10:08:59 | 只看該作者
Symmetrien (Gruppen und Geometrie),ukturen mit Hilfe ihrer Automorphismengruppen untersucht werden; einer der Initiatoren dieser Richtung war .. In diesem Abschnitt wollen wir einen Eindruck von einigen grundlegenden Gedankeng?ngen der Abbildungsgeometrie vermitteln. Dabei werden viele Ergebnisse in Aufgabenform behandelt.
12#
發(fā)表于 2025-3-23 16:17:11 | 只看該作者
dem Bereich der Algebra dienen kann. Insofern werden hier einerseits keine algebraischen Kenntnisse vorausgesetzt und andererseits bewu?t weitergehende algebraische Begriffsbildungen (wie etwa "Ring", "K?rper", "Vektorraum", etc.) vermieden. Vom Leser wird ledig- lich eine gewisse Vertrautheit mit d
13#
發(fā)表于 2025-3-23 21:42:39 | 只看該作者
Christian Rademacher,Walter Bartlnicht viele Werkzeuge zur strukturellen Analyse von Gruppen bereitgestellt. Dies soll in diesem Abschnitt nachgeholt werden, wobei wir zun?chst die Struktur einer Gruppe im Hinblick auf ihre kleinen Bestandteile, die Untergruppen, betrachten.
14#
發(fā)表于 2025-3-24 00:30:24 | 只看該作者
https://doi.org/10.1007/978-3-658-43278-2wesentlichen durch elementare zahlentheoretische Oberlegungen. Oberhaupt besteht ein enger Zusammenhang zwischen elementarer Zahlen- und Gruppentheorie, der sich vor allem auf die vier folgenden Ph?nomene gründet:
15#
發(fā)表于 2025-3-24 05:24:25 | 只看該作者
16#
發(fā)表于 2025-3-24 07:08:23 | 只看該作者
Textbook 1984h der Algebra dienen kann. Insofern werden hier einerseits keine algebraischen Kenntnisse vorausgesetzt und andererseits bewu?t weitergehende algebraische Begriffsbildungen (wie etwa "Ring", "K?rper", "Vektorraum", etc.) vermieden. Vom Leser wird ledig- lich eine gewisse Vertrautheit mit dem Zahlenr
17#
發(fā)表于 2025-3-24 14:07:58 | 只看該作者
18#
發(fā)表于 2025-3-24 15:05:07 | 只看該作者
https://doi.org/10.1007/978-3-658-00537-5isten der konkreten Beispiele waren Gruppen aus Zahlen oder Zahlentupeln, also insbesondere stets abelsche Gruppen. Zugleich wurden gewisse grundlegende Ph?nomene des Zahlenrechnens algebraisch eingeordnet und der naive Umgang mit ihnen auf eine sichere Grundlage gestellt.
19#
發(fā)表于 2025-3-24 20:19:40 | 只看該作者
20#
發(fā)表于 2025-3-24 23:46:28 | 只看該作者
Das Rechnen in Gruppen (Gruppen und Arithmetik),(naheliegenden) Rechengesetzen genügen. Die Theorie des betreffenden Strukturtyps (hier: die Gruppentheorie) erw?chst aus dem Versuch, einen m?glichst vollst?ndigen Oberblick über alle Modelle des Strukturtyps (hier: Gruppen) zu gewinnen — ein Ziel, das oft in unerreichbarer Ferne liegt.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 04:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
潜江市| 芦溪县| 张家口市| 陇南市| 乐陵市| 治多县| 南开区| 波密县| 米易县| 三穗县| 滨州市| 西丰县| 灵宝市| 沙田区| 隆安县| 定远县| 西昌市| 那坡县| 沙湾县| 苗栗市| 福州市| 绥中县| 界首市| 静乐县| 阳江市| 乌兰县| 任丘市| 丰城市| 内江市| 凤阳县| 丽江市| 如东县| 蒙阴县| 赤城县| 福建省| 明溪县| 栾城县| 望都县| 万荣县| 仙游县| 峡江县|