找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Elementary engineering fracture mechanics; David Broek Book 1982 Martinus Nijhoff Publishers, The Hague 1982 alloy.cracks.damage.dynamics.

[復(fù)制鏈接]
樓主: 方言
31#
發(fā)表于 2025-3-26 23:41:15 | 只看該作者
32#
發(fā)表于 2025-3-27 01:19:14 | 只看該作者
33#
發(fā)表于 2025-3-27 09:20:51 | 只看該作者
https://doi.org/10.1007/978-3-322-81699-3em in linear elastic fracture mechanics is the establishment of the stress intensity factor for the crack problem under consideration. Since the introduction of fracture mechanics much effort has been put into the derivation of stress intensity factors, and a variety of methods have been developed to approach the problem.
34#
發(fā)表于 2025-3-27 12:58:16 | 只看該作者
Fatigue crack propagation procedures have obvious shortcomings, but the prediction of fatigue crack propagation characteristics is even less accurate, despite the vast amount of research that has been done on this subject. Yet the developments achieved during the last decade justify a moderate optimism about the possibilities of prediction techniques.
35#
發(fā)表于 2025-3-27 15:25:15 | 只看該作者
Fracture resistance of materials discussion. For a perfectly brittle extension of this crack by cleavage, the criterion for crack propagation seems fairly easy. Cleavage failure occurs by the breaking of atomic bonds: consequently cleavage crack propagation can take place when the, stresses at the very crack tip exceed the interatomic cohesive forces.
36#
發(fā)表于 2025-3-27 21:26:06 | 只看該作者
37#
發(fā)表于 2025-3-28 01:33:41 | 只看該作者
https://doi.org/10.1007/978-94-009-4333-9alloy; cracks; damage; dynamics; fatigue; finite element method; fracture; fracture mechanics; stability; str
38#
發(fā)表于 2025-3-28 04:12:33 | 只看該作者
Lobbying in der Europ?ischen UnionConsider a coordinate system . in a stressed solid. In each point (.) one can define the stresses σ., σ., σ., τ., τ., τ.. In a condition of plane stress σ. = τ. = τ. = 0. In a condition of plane strain ε. = 0 from which it follows that σ. = .(σ. + σ.).
39#
發(fā)表于 2025-3-28 07:20:35 | 只看該作者
40#
發(fā)表于 2025-3-28 10:55:09 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 05:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阿鲁科尔沁旗| 共和县| 枣强县| 故城县| 泰州市| 康保县| 阿合奇县| 乌拉特中旗| 平顶山市| 西林县| 将乐县| 淮南市| 裕民县| 松滋市| 南昌县| 保定市| 玉溪市| 西盟| 和田县| 柳州市| 拜泉县| 勐海县| 宁化县| 垫江县| 开原市| 万盛区| 禹城市| 千阳县| 衢州市| 贵定县| 稷山县| 淅川县| 比如县| 凤城市| 密山市| 长治市| 沧源| 德江县| 宁陕县| 云梦县| 鸡西市|