找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elementary and Analytic Theory of Algebraic Numbers; W?adys?aw Narkiewicz Book 2004Latest edition Springer-Verlag Berlin Heidelberg 2004 A

[復(fù)制鏈接]
樓主: Gullet
11#
發(fā)表于 2025-3-23 10:54:31 | 只看該作者
https://doi.org/10.1007/978-3-322-85872-6t’s .-functions, and derive the functional equations for them. Our arguments will be based on the results of Chap. 6. Subsequent sections are devoted to asymptotic distribution of ideals and prime ideals. We shall use the tauberian theorem of Delange, an account of which is given in Appendix II, as
12#
發(fā)表于 2025-3-23 14:26:48 | 只看該作者
https://doi.org/10.1007/978-3-658-19102-3 the Kronecker-Weber theorem (Theorem 6.18) every such extension is contained in a suitable cyclotomic field .. = ?(ζ.). The least integer . with the property .?.. is called the . of ., and is denoted by .(.).S The main properties of the conductor are listed in the following proposition:
13#
發(fā)表于 2025-3-23 21:58:16 | 只看該作者
14#
發(fā)表于 2025-3-23 23:48:29 | 只看該作者
W?adys?aw NarkiewiczBrings the main principal results in the classical algebraic number theory, with the exception of class-field theory.Up-to-date extensive bibliography containing 3400 items.Each chapter ends with a se
15#
發(fā)表于 2025-3-24 02:29:02 | 只看該作者
16#
發(fā)表于 2025-3-24 07:23:40 | 只看該作者
17#
發(fā)表于 2025-3-24 13:24:10 | 只看該作者
Introduction - Properties of Materials,cations, and in the second we introduce the ring of adeles and the group of ideles, study their principal proprieties and perform some harmonic analysis, including the deduction of the functional equation for suitably defined zeta-functions.
18#
發(fā)表于 2025-3-24 18:39:34 | 只看該作者
19#
發(fā)表于 2025-3-24 21:42:10 | 只看該作者
Extensions,raditionally an . if . ?, and is called a . if . ≠ ?. The same applies to other notions which will arise in the sequel, and so we shall speak about, say, a . of an exten-sion, whereas by the . we shall mean the discriminant .(.), defined in Chap. 2.
20#
發(fā)表于 2025-3-25 02:13:43 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 21:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
甘德县| 遵化市| 门头沟区| 绩溪县| 蕉岭县| 石河子市| 澎湖县| 东光县| 自贡市| 宁河县| 遂平县| 恭城| 江孜县| 台江县| 鹤岗市| 福清市| 建昌县| 南和县| 乌拉特后旗| 宝兴县| 武宁县| 陕西省| 正镶白旗| 崇仁县| 台北市| 江永县| 扎兰屯市| 肃北| 色达县| 博白县| 西乌珠穆沁旗| 延庆县| 吉安市| 浑源县| 合川市| 奉新县| 锦州市| 文水县| 阿巴嘎旗| 沿河| 津市市|