找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elementary and Analytic Theory of Algebraic Numbers; W?adys?aw Narkiewicz Book 2004Latest edition Springer-Verlag Berlin Heidelberg 2004 A

[復制鏈接]
樓主: Gullet
11#
發(fā)表于 2025-3-23 10:54:31 | 只看該作者
https://doi.org/10.1007/978-3-322-85872-6t’s .-functions, and derive the functional equations for them. Our arguments will be based on the results of Chap. 6. Subsequent sections are devoted to asymptotic distribution of ideals and prime ideals. We shall use the tauberian theorem of Delange, an account of which is given in Appendix II, as
12#
發(fā)表于 2025-3-23 14:26:48 | 只看該作者
https://doi.org/10.1007/978-3-658-19102-3 the Kronecker-Weber theorem (Theorem 6.18) every such extension is contained in a suitable cyclotomic field .. = ?(ζ.). The least integer . with the property .?.. is called the . of ., and is denoted by .(.).S The main properties of the conductor are listed in the following proposition:
13#
發(fā)表于 2025-3-23 21:58:16 | 只看該作者
14#
發(fā)表于 2025-3-23 23:48:29 | 只看該作者
W?adys?aw NarkiewiczBrings the main principal results in the classical algebraic number theory, with the exception of class-field theory.Up-to-date extensive bibliography containing 3400 items.Each chapter ends with a se
15#
發(fā)表于 2025-3-24 02:29:02 | 只看該作者
16#
發(fā)表于 2025-3-24 07:23:40 | 只看該作者
17#
發(fā)表于 2025-3-24 13:24:10 | 只看該作者
Introduction - Properties of Materials,cations, and in the second we introduce the ring of adeles and the group of ideles, study their principal proprieties and perform some harmonic analysis, including the deduction of the functional equation for suitably defined zeta-functions.
18#
發(fā)表于 2025-3-24 18:39:34 | 只看該作者
19#
發(fā)表于 2025-3-24 21:42:10 | 只看該作者
Extensions,raditionally an . if . ?, and is called a . if . ≠ ?. The same applies to other notions which will arise in the sequel, and so we shall speak about, say, a . of an exten-sion, whereas by the . we shall mean the discriminant .(.), defined in Chap. 2.
20#
發(fā)表于 2025-3-25 02:13:43 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 01:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
廉江市| 大庆市| 苍溪县| 瑞昌市| 凤翔县| 寿光市| 康平县| 垣曲县| 青龙| 丽水市| 玉山县| 土默特右旗| 咸丰县| 江门市| 瑞丽市| 缙云县| 高青县| 确山县| 南涧| 乌鲁木齐市| 廉江市| 呼和浩特市| 清徐县| 台山市| 商南县| 宜章县| 荃湾区| 龙游县| 衡阳市| 志丹县| 建湖县| 荥经县| 台北市| 德安县| 马尔康县| 宁城县| 汉川市| 扶绥县| 潼南县| 乐至县| 册亨县|