找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Elementary Stability and Bifurcation Theory; Gérard Iooss,Daniel D. Joseph Textbook 19801st edition Springer Science+Business Media New Yo

[復(fù)制鏈接]
樓主: 注射
21#
發(fā)表于 2025-3-25 06:19:51 | 只看該作者
Bifurcation of Forced ,-Periodic Solutions into Asymptotically Quasi-Periodic Solutions,In Chapter IX we determined the conditions under which subharmonic solutions, nT-periodic solutions with integers . > 1, could bifurcate from forced T-periodic solutions.
22#
發(fā)表于 2025-3-25 10:42:53 | 只看該作者
Undergraduate Texts in Mathematicshttp://image.papertrans.cn/e/image/307422.jpg
23#
發(fā)表于 2025-3-25 12:53:12 | 只看該作者
24#
發(fā)表于 2025-3-25 16:14:26 | 只看該作者
25#
發(fā)表于 2025-3-25 21:34:09 | 只看該作者
26#
發(fā)表于 2025-3-26 01:35:06 | 只看該作者
27#
發(fā)表于 2025-3-26 07:06:06 | 只看該作者
https://doi.org/10.1007/978-3-476-03058-0um solutions of evolution problems governed by nonlinear differential equations. We have written this book for the broadest audience of potentially interested learners: engineers, biologists, chemists, physicists, mathematicians, economists, and others whose work involves understanding equilibrium solutions of nonlinear differential equations.
28#
發(fā)表于 2025-3-26 09:05:55 | 只看該作者
29#
發(fā)表于 2025-3-26 14:32:16 | 只看該作者
Koyel Bhattacharya,Sanjib Bhattacharyaroblems in the form.where U = 0 is . a solution because.In this type of problem the outside world communicates with the dynamical system governed by (XI.l)! through the imposed data (XI.1).. The dynamical system sees the outside world as precisely T-periodic and it must adjust its own evolution to fit this fact.
30#
發(fā)表于 2025-3-26 17:28:03 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-28 02:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
建水县| 仲巴县| 临汾市| 浏阳市| 怀远县| 六盘水市| 南部县| 夏邑县| 建宁县| 中阳县| 马边| 金门县| 梅河口市| 成安县| 新龙县| 赤壁市| 平山县| 宜城市| 卢氏县| 南宁市| 自治县| 广昌县| 奇台县| 宁波市| 玉屏| 无极县| 兴山县| 湛江市| 从化市| 定日县| 喜德县| 怀集县| 新绛县| 巫山县| 克拉玛依市| 临潭县| 靖江市| 浦县| 榆社县| 静海县| 敖汉旗|