找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elementary Stability and Bifurcation Theory; Gérard Iooss,Daniel D. Joseph Textbook 19801st edition Springer Science+Business Media New Yo

[復(fù)制鏈接]
樓主: 注射
11#
發(fā)表于 2025-3-23 09:54:08 | 只看該作者
https://doi.org/10.1007/978-3-476-03037-5We consider an evolution equation in [R. of the form . where F(·,·) has two continuous derivatives with respect to . and ..
12#
發(fā)表于 2025-3-23 14:44:21 | 只看該作者
13#
發(fā)表于 2025-3-23 20:13:02 | 只看該作者
14#
發(fā)表于 2025-3-24 00:47:17 | 只看該作者
15#
發(fā)表于 2025-3-24 05:56:53 | 只看該作者
16#
發(fā)表于 2025-3-24 09:42:38 | 只看該作者
Equilibrium Solutions of Evolution Problems,We are going to study equilibrium solutions of evolution equations of the form.where . ≥ 0 is the time and . is a parameter which lies on the real line ? ∞ < . < ∞.
17#
發(fā)表于 2025-3-24 11:47:16 | 只看該作者
Bifurcation and Stability of Steady Solutions of Evolution Equations in One Dimension,We consider an evolution equation in [R. of the form . where F(·,·) has two continuous derivatives with respect to . and ..
18#
發(fā)表于 2025-3-24 17:55:54 | 只看該作者
Stability of Steady Solutions of Evolution Equations in Two Dimensions and , Dimensions,We noted in the introduction that the solutions of three nonlinear ordinary differential equations can be turbulent-like and outside the scope of elementary analysis. In fact, the most complete results known in bifurcation theory are for problems which can be reduced to one or two dimensions.
19#
發(fā)表于 2025-3-24 21:31:09 | 只看該作者
20#
發(fā)表于 2025-3-25 02:18:37 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-28 05:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
务川| 洪湖市| 新乐市| 三台县| 庆城县| 德钦县| 游戏| 崇礼县| 蓝田县| 濮阳县| 常熟市| 大悟县| 体育| 云龙县| 宁安市| 边坝县| 新巴尔虎左旗| 易门县| 金坛市| 安徽省| 贡觉县| 当雄县| 华宁县| 嘉黎县| 屏山县| 承德县| 黔东| 昔阳县| 安吉县| 贞丰县| 正宁县| 长寿区| 雷州市| 白朗县| 正宁县| 东莞市| 汨罗市| 桂阳县| 宁远县| 南昌县| 封丘县|