找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elementary Number Theory; Gareth A. Jones,J. Mary Jones Textbook 1998 Springer-Verlag London 1998 Mersenne prime.Prime.Prime number.Rieman

[復(fù)制鏈接]
查看: 10092|回復(fù): 48
樓主
發(fā)表于 2025-3-21 16:39:49 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Elementary Number Theory
編輯Gareth A. Jones,J. Mary Jones
視頻videohttp://file.papertrans.cn/308/307398/307398.mp4
概述The essential guide to number theory for undergraduates.Distinguishing features include discussions of the Riemann Zeta Function and Riemann Hypothesis.Includes supplementary material:
叢書名稱Springer Undergraduate Mathematics Series
圖書封面Titlebook: Elementary Number Theory;  Gareth A. Jones,J. Mary Jones Textbook 1998 Springer-Verlag London 1998 Mersenne prime.Prime.Prime number.Rieman
描述Our intention in writing this book is to give an elementary introduction to number theory which does not demand a great deal of mathematical back- ground or maturity from the reader, and which can be read and understood with no extra assistance. Our first three chapters are based almost entirely on A-level mathematics, while the next five require little else beyond some el- ementary group theory. It is only in the last three chapters, where we treat more advanced topics, including recent developments, that we require greater mathematical background; here we use some basic ideas which students would expect to meet in the first year or so of a typical undergraduate course in math- ematics. Throughout the book, we have attempted to explain our arguments as fully and as clearly as possible, with plenty of worked examples and with outline solutions for all the exercises. There are several good reasons for choosing number theory as a subject. It has a long and interesting history, ranging from the earliest recorded times to the present day (see Chapter 11, for instance, on Fermat‘s Last Theorem), and its problems have attracted many of the greatest mathematicians; consequently the study
出版日期Textbook 1998
關(guān)鍵詞Mersenne prime; Prime; Prime number; Riemann zeta function; calculus; cryptography; number theory
版次1
doihttps://doi.org/10.1007/978-1-4471-0613-5
isbn_softcover978-3-540-76197-6
isbn_ebook978-1-4471-0613-5Series ISSN 1615-2085 Series E-ISSN 2197-4144
issn_series 1615-2085
copyrightSpringer-Verlag London 1998
The information of publication is updating

書目名稱Elementary Number Theory影響因子(影響力)




書目名稱Elementary Number Theory影響因子(影響力)學(xué)科排名




書目名稱Elementary Number Theory網(wǎng)絡(luò)公開度




書目名稱Elementary Number Theory網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Elementary Number Theory被引頻次




書目名稱Elementary Number Theory被引頻次學(xué)科排名




書目名稱Elementary Number Theory年度引用




書目名稱Elementary Number Theory年度引用學(xué)科排名




書目名稱Elementary Number Theory讀者反饋




書目名稱Elementary Number Theory讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:01:04 | 只看該作者
1615-2085 e earliest recorded times to the present day (see Chapter 11, for instance, on Fermat‘s Last Theorem), and its problems have attracted many of the greatest mathematicians; consequently the study 978-3-540-76197-6978-1-4471-0613-5Series ISSN 1615-2085 Series E-ISSN 2197-4144
板凳
發(fā)表于 2025-3-22 03:29:03 | 只看該作者
地板
發(fā)表于 2025-3-22 05:18:40 | 只看該作者
https://doi.org/10.1007/978-3-658-39503-2 and theorems are valid for certain other objects which can be added, subtracted and multiplied; some of these objects, such as polynomials, are very familiar, while others, such as Gaussian integers and quaternions, will be introduced in later chapters. These generalisations of the integers are als
5#
發(fā)表于 2025-3-22 09:00:35 | 只看該作者
Gareth A. Jones,J. Mary JonesThe essential guide to number theory for undergraduates.Distinguishing features include discussions of the Riemann Zeta Function and Riemann Hypothesis.Includes supplementary material:
6#
發(fā)表于 2025-3-22 13:16:35 | 只看該作者
7#
發(fā)表于 2025-3-22 18:18:25 | 只看該作者
https://doi.org/10.1007/978-3-658-39503-2 already, though it may not have been treated as formally as here. There are several good reasons for giving very precise definitions and proofs, even when there is general agreement about the validity of the mathematics involved. The first is that ‘general agreement’ is not the same as convincing p
8#
發(fā)表于 2025-3-22 21:42:18 | 只看該作者
9#
發(fā)表于 2025-3-23 01:30:18 | 只看該作者
10#
發(fā)表于 2025-3-23 06:08:21 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-27 12:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
贵州省| 秀山| 申扎县| 观塘区| 绥阳县| 井陉县| 海安县| 临沂市| 乌审旗| 怀集县| 奉化市| 甘谷县| 神农架林区| 嘉兴市| 铜梁县| 司法| 梅州市| 柯坪县| 信丰县| 曲水县| 阜平县| 徐州市| 汉川市| 横山县| 景宁| 蒙阴县| 杂多县| 德安县| 双鸭山市| 独山县| 通渭县| 蛟河市| 宁化县| 五家渠市| 遵义市| 呼和浩特市| 岳普湖县| 遵义县| 德清县| 灵石县| 黔西县|