找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elementare und algebraische Zahlentheorie; Ein moderner Zugang Stefan Müller-Stach,Jens Piontkowski Textbook 20071st edition Vieweg+Teubne

[復(fù)制鏈接]
樓主: Herbaceous
31#
發(fā)表于 2025-3-26 23:34:54 | 只看該作者
https://doi.org/10.1007/978-3-662-25395-3In diesem Abschnitt wollen wir diskutieren, wie man entscheiden kann, ob eine gegebene Zahl . ∈ ? prim ist. Dazu k?nnte man natürlich auch die Faktorisierungsalgorithmen des n?chsten Abschnittes verwenden, diese haben jedoch eine wesentlich schlechtere Laufzeit.
32#
發(fā)表于 2025-3-27 02:41:01 | 只看該作者
https://doi.org/10.1007/978-3-662-25396-0Im Abschnitt 8 haben wir quadratische Gleichungen im K?rper . gel?st. Wie kann man Gleichungen in den Ringen ?/.?, die ja noch nicht einmal Integrit?tsringe sind, l?sen?
33#
發(fā)表于 2025-3-27 07:01:38 | 只看該作者
34#
發(fā)表于 2025-3-27 11:41:46 | 只看該作者
,Büroausstattung und Büroorganisation,Zahlk?rper sind der Hauptgegenstand für überlegungen in der algebraischen Zahlentheorie.
35#
發(fā)表于 2025-3-27 15:31:50 | 只看該作者
https://doi.org/10.1007/978-3-642-97969-9In diesem Abschnitt wollen wir die Einheiten des Ringes ganzer Zahlen eines Zahlk?rpers bestimmen — oder zumindest Aussagen über die Struktur dieser Gruppe machen. Wir werden das für quadratische Zahlk?rper genau durchführen und die Ergebnisse über beliebige Zahlk?rper zitieren.
36#
發(fā)表于 2025-3-27 17:56:09 | 只看該作者
https://doi.org/10.1007/978-3-642-97730-5Wir haben bereits gesehen, dass nicht alle Ringe ganzer Zahlen faktoriell sind, d.h. ihre Elemente besitzen keine eindeutige Zerlegung in ein Produkt irreduzibler Elemente. Betrachten wir noch einmal zwei Beispiele: ..
37#
發(fā)表于 2025-3-28 01:01:05 | 只看該作者
38#
發(fā)表于 2025-3-28 03:07:05 | 只看該作者
39#
發(fā)表于 2025-3-28 08:51:35 | 只看該作者
Kongruenzrechnung,Bei der Kongruenzrechnung betrachten wir die ganzen Zahlen ?bis auf Vielfache“ einer narürlichen Zahl . ∈ ?.
40#
發(fā)表于 2025-3-28 10:56:28 | 只看該作者
,Die Ringe ?/,?,In diesem Abschnitt wollen wir die Ergebnisse des letzten abstrahieren und vertiefen. Wir starten mit der folgenden offensichtlichen Bemerkung.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 20:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
商水县| 英德市| 新蔡县| 乌兰县| 新田县| 陈巴尔虎旗| 莎车县| 磐安县| 中阳县| 安义县| 商南县| 桐柏县| 合江县| 石家庄市| 南安市| 吉水县| 临海市| 开鲁县| 武乡县| 碌曲县| 谢通门县| 汉川市| 溆浦县| 乌鲁木齐县| 岱山县| 昌都县| 株洲县| 建宁县| 普洱| 江口县| 诸城市| 石阡县| 和林格尔县| 天峻县| 崇礼县| 青岛市| 息烽县| 剑河县| 昭觉县| 天祝| 延寿县|