找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elementare und algebraische Zahlentheorie; Ein moderner Zugang Stefan Müller-Stach,Jens Piontkowski Textbook 20071st edition Vieweg+Teubne

[復(fù)制鏈接]
樓主: Herbaceous
31#
發(fā)表于 2025-3-26 23:34:54 | 只看該作者
https://doi.org/10.1007/978-3-662-25395-3In diesem Abschnitt wollen wir diskutieren, wie man entscheiden kann, ob eine gegebene Zahl . ∈ ? prim ist. Dazu k?nnte man natürlich auch die Faktorisierungsalgorithmen des n?chsten Abschnittes verwenden, diese haben jedoch eine wesentlich schlechtere Laufzeit.
32#
發(fā)表于 2025-3-27 02:41:01 | 只看該作者
https://doi.org/10.1007/978-3-662-25396-0Im Abschnitt 8 haben wir quadratische Gleichungen im K?rper . gel?st. Wie kann man Gleichungen in den Ringen ?/.?, die ja noch nicht einmal Integrit?tsringe sind, l?sen?
33#
發(fā)表于 2025-3-27 07:01:38 | 只看該作者
34#
發(fā)表于 2025-3-27 11:41:46 | 只看該作者
,Büroausstattung und Büroorganisation,Zahlk?rper sind der Hauptgegenstand für überlegungen in der algebraischen Zahlentheorie.
35#
發(fā)表于 2025-3-27 15:31:50 | 只看該作者
https://doi.org/10.1007/978-3-642-97969-9In diesem Abschnitt wollen wir die Einheiten des Ringes ganzer Zahlen eines Zahlk?rpers bestimmen — oder zumindest Aussagen über die Struktur dieser Gruppe machen. Wir werden das für quadratische Zahlk?rper genau durchführen und die Ergebnisse über beliebige Zahlk?rper zitieren.
36#
發(fā)表于 2025-3-27 17:56:09 | 只看該作者
https://doi.org/10.1007/978-3-642-97730-5Wir haben bereits gesehen, dass nicht alle Ringe ganzer Zahlen faktoriell sind, d.h. ihre Elemente besitzen keine eindeutige Zerlegung in ein Produkt irreduzibler Elemente. Betrachten wir noch einmal zwei Beispiele: ..
37#
發(fā)表于 2025-3-28 01:01:05 | 只看該作者
38#
發(fā)表于 2025-3-28 03:07:05 | 只看該作者
39#
發(fā)表于 2025-3-28 08:51:35 | 只看該作者
Kongruenzrechnung,Bei der Kongruenzrechnung betrachten wir die ganzen Zahlen ?bis auf Vielfache“ einer narürlichen Zahl . ∈ ?.
40#
發(fā)表于 2025-3-28 10:56:28 | 只看該作者
,Die Ringe ?/,?,In diesem Abschnitt wollen wir die Ergebnisse des letzten abstrahieren und vertiefen. Wir starten mit der folgenden offensichtlichen Bemerkung.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 20:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
福贡县| 潜山县| 商都县| 沁水县| 乌拉特后旗| 和政县| 唐海县| 尼玛县| 会同县| 兴业县| 繁昌县| 银川市| 庆云县| 东辽县| 万山特区| 驻马店市| 启东市| 任丘市| 洞口县| 黄大仙区| 南岸区| 泾源县| 泉州市| 工布江达县| 山丹县| 通化县| 鄄城县| 毕节市| 肃北| 德惠市| 武平县| 桃江县| 湄潭县| 乐都县| 天津市| 清水河县| 湖州市| 安龙县| 卓尼县| 定日县| 舟曲县|