找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elementare Differentialgeometrie; W. Blaschke,Kurt Leichtwei? Textbook 1973Latest edition Springer-Verlag Berlin Heidelberg 1973 Different

[復(fù)制鏈接]
樓主: 相似
11#
發(fā)表于 2025-3-23 11:04:37 | 只看該作者
12#
發(fā)表于 2025-3-23 15:40:00 | 只看該作者
Legitimation in a World at Riskbereitung auf die Fragen der Fl?chentheorie mit den Fl?chenstreifen besch?ftigt. Jetzt wollen wir mit der Lehre von der Krümmung der Fl?chen beginnen, wie sie nach den ersten Untersuchungen von L. Euler (1707–1783), dann insbesondere von G. Monge (1746–1818) in seinem klassischen Werk ?L’application
13#
發(fā)表于 2025-3-23 21:46:49 | 只看該作者
14#
發(fā)表于 2025-3-23 22:50:50 | 只看該作者
https://doi.org/10.1007/978-3-531-90451-1biegsamen, undehnbaren Stoff hergestellt, wie er etwa durch Papier verwirklicht wird, so l??t diese Fl?che (oder ein genügend kleines Stück von ihr) au?er ihrer Beweglichkeit als starrer K?rper im allgemeinen auch noch (stetige) Form?nderungen, sogenannte . zu. Die Undehnbarkeit ?u?ert sich dadurch,
15#
發(fā)表于 2025-3-24 03:54:05 | 只看該作者
https://doi.org/10.1007/978-3-658-16036-4ng . mit Parametern .., ...., ..-. zulassen (vgl. § 41). Bei vielen Fl?chen ist aber eine derartige Darstellung nicht m?glich, wie z.B. bei der Kugel. Wir werden n?mlich im übern?chsten Paragraphen sehen, da? auf der Kugel kein stetiges Feld von überall von Null verschiedenen Tangentenvektoren — wie
16#
發(fā)表于 2025-3-24 07:18:53 | 只看該作者
angsfl?che. Auf deren Fl?chennormalen tragen wir die L?ngen . (. = stetig differenzierbar, . = const!) ab und kommen dadurch zur Nachbarfl?che . die für ε→ 0 in die Ausgangsfl?che hineinrückt. Durch Ableitung nach .. folgt . (.=1,2)
17#
發(fā)表于 2025-3-24 13:56:25 | 只看該作者
Grundlehren der mathematischen Wissenschaftenhttp://image.papertrans.cn/e/image/307268.jpg
18#
發(fā)表于 2025-3-24 16:09:05 | 只看該作者
19#
發(fā)表于 2025-3-24 20:41:09 | 只看該作者
Elementare Differentialgeometrie978-3-642-49193-1Series ISSN 0072-7830 Series E-ISSN 2196-9701
20#
發(fā)表于 2025-3-25 00:51:15 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-16 06:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
岐山县| 时尚| 兴文县| 泸西县| 巴青县| 庄浪县| 三原县| 大丰市| 尚志市| 盘山县| 东兴市| 宜昌市| 伊金霍洛旗| 珲春市| 彩票| 平舆县| 喀喇沁旗| 勃利县| 青川县| 玉田县| 周宁县| 延庆县| 南陵县| 莒南县| 三原县| 六盘水市| 乌拉特后旗| 容城县| 盘锦市| 遂川县| 榆林市| 墨玉县| 繁峙县| 泉州市| 浏阳市| 扶绥县| 仁怀市| 纳雍县| 马山县| 综艺| 吉林省|