找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Electronic Nose: Algorithmic Challenges; Lei Zhang,Fengchun Tian,David Zhang Book 2018 Springer Nature Singapore Pte Ltd. 2018 Electronic

[復(fù)制鏈接]
樓主: injurious
41#
發(fā)表于 2025-3-28 18:30:06 | 只看該作者
42#
發(fā)表于 2025-3-28 21:17:18 | 只看該作者
Other inorganic electrolytic processes, constructed for correction. Finally, an effective signal correction method was employed for E-nose data. Experimental results in the real case-studies demonstrate the effectiveness of the presented model in E-nose based on MOS gas sensors array.
43#
發(fā)表于 2025-3-28 23:40:35 | 只看該作者
44#
發(fā)表于 2025-3-29 07:04:36 | 只看該作者
45#
發(fā)表于 2025-3-29 08:44:48 | 只看該作者
Domain Adaptation Guided Drift Compensationin classifier with drift compensation. Experiments on the popular sensor drift data of multiple batches clearly demonstrate that the proposed DAELM significantly outperforms existing drift compensation methods.
46#
發(fā)表于 2025-3-29 11:38:32 | 只看該作者
Domain Regularized Subspace Projection Method and anti-drift is manifested with a well-solved projection matrix in real application. Experiments on synthetic data and real datasets demonstrate the effectiveness and efficiency of the proposed anti-drift method in comparison to state-of-the-art methods.
47#
發(fā)表于 2025-3-29 16:00:30 | 只看該作者
Pattern Recognition-Based Interference Reduction constructed for correction. Finally, an effective signal correction method was employed for E-nose data. Experimental results in the real case-studies demonstrate the effectiveness of the presented model in E-nose based on MOS gas sensors array.
48#
發(fā)表于 2025-3-29 22:58:03 | 只看該作者
Introductionduring the past two decades. Then, we propose to address these key challenges in E-nose, which are sensor induced and sensor specific. This chapter is closed by a statement of the objective of the research, a brief summary of the work, and a general outline of the overall structure of this book.
49#
發(fā)表于 2025-3-30 03:10:04 | 只看該作者
50#
發(fā)表于 2025-3-30 04:33:53 | 只看該作者
Heuristic and Bio-inspired Neural Network Model using a multi-sensor system. The estimation accuracy in actual application is concerned too much by manufacturers and researchers. This chapter analyzes the application of different bio-inspired and heuristic techniques to improve the concentration estimation in experimental electronic nose applica
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 03:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安西县| 金乡县| 长沙市| 高平市| 鸡西市| 同仁县| 温州市| 柳江县| 手游| 诸暨市| 定安县| 绥德县| 德安县| 夹江县| 昆明市| 阳山县| 宜宾县| 德兴市| 仙游县| 武强县| 普洱| 尉犁县| 儋州市| 凤台县| 沁源县| 郓城县| 彰化县| 黑水县| 杭州市| 海原县| 巨野县| 天等县| 剑河县| 河北省| 凤凰县| 雅江县| 台北县| 康平县| 原阳县| 文昌市| 南漳县|