找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Electronic Nose: Algorithmic Challenges; Lei Zhang,Fengchun Tian,David Zhang Book 2018 Springer Nature Singapore Pte Ltd. 2018 Electronic

[復(fù)制鏈接]
樓主: injurious
31#
發(fā)表于 2025-3-26 23:09:13 | 只看該作者
32#
發(fā)表于 2025-3-27 02:15:58 | 只看該作者
Domain Correction-Based Adaptive Extreme Learning Machineansfer learning, especially from the perspective of domain correction and decision making, to realize the knowledge transfer for interference suppression and drift compensation. Experiments on a background interference dataset and a public benchmark sensor drift dataset via E-nose verify the effectiveness of the proposed DC-AELM method.
33#
發(fā)表于 2025-3-27 05:46:29 | 只看該作者
34#
發(fā)表于 2025-3-27 10:17:21 | 只看該作者
The Geography of Design in the Cityntal results demonstrate that the HSVM model outperforms other classifiers in general. Also, HSVM classifier preliminarily shows its superiority in solution to discrimination in various electronic nose applications.
35#
發(fā)表于 2025-3-27 13:55:34 | 只看該作者
Costs of Energy and Drying Equipment,n; second, in the process of establishing classifiers ensemble, a new fusion approach conducting an effective base classifier weighted method is proposed. Experimental results show that the average classification accuracy of the proposed method has been significantly improved over base classifiers and majority voting-based fusion strategy.
36#
發(fā)表于 2025-3-27 18:49:07 | 只看該作者
Paul R. Ferguson,Glenys J. Fergusonansfer learning, especially from the perspective of domain correction and decision making, to realize the knowledge transfer for interference suppression and drift compensation. Experiments on a background interference dataset and a public benchmark sensor drift dataset via E-nose verify the effectiveness of the proposed DC-AELM method.
37#
發(fā)表于 2025-3-28 01:35:45 | 只看該作者
Book 2018aling to readers from the fields of artificial intelligence, computer science, electrical engineering, electronics, and instrumentation science, it addresses three main areas: First, readers will learn how to apply machine learning, pattern recognition and signal processing algorithms to real percep
38#
發(fā)表于 2025-3-28 04:12:31 | 只看該作者
Work Autonomy and Product Innovation,work. We present the performance of a particle swarm optimization technique, an adaptive genetic strategy, and a back-propagation artificial neural network approach to perform concentration estimation of chemical gases and improve the intelligence of an E-nose.
39#
發(fā)表于 2025-3-28 09:54:47 | 只看該作者
Pfadwechsel — schwierig aber notwendigmonstrates the obvious chaotic behavior through the Lyapunov exponents. Results demonstrate that the proposed model can make long-term and accurate prediction of time series chemical sensor baseline and drift.
40#
發(fā)表于 2025-3-28 14:03:40 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 06:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
万源市| 长垣县| 南宁市| 中西区| 苏尼特右旗| 古田县| 绿春县| 潢川县| 宜都市| 葫芦岛市| 龙口市| 太康县| 恭城| 天津市| 黑龙江省| 岢岚县| 临潭县| 内黄县| 长治市| 瑞丽市| 定远县| 潼南县| 鹰潭市| 渭源县| 灌阳县| 堆龙德庆县| 股票| 阳东县| 宝坻区| 宜宾市| 浦东新区| 河池市| 安塞县| 积石山| 汕尾市| 大埔县| 绥江县| 客服| 聂拉木县| 灵川县| 清流县|