找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Electronic Nose: Algorithmic Challenges; Lei Zhang,Fengchun Tian,David Zhang Book 2018 Springer Nature Singapore Pte Ltd. 2018 Electronic

[復(fù)制鏈接]
樓主: injurious
31#
發(fā)表于 2025-3-26 23:09:13 | 只看該作者
32#
發(fā)表于 2025-3-27 02:15:58 | 只看該作者
Domain Correction-Based Adaptive Extreme Learning Machineansfer learning, especially from the perspective of domain correction and decision making, to realize the knowledge transfer for interference suppression and drift compensation. Experiments on a background interference dataset and a public benchmark sensor drift dataset via E-nose verify the effectiveness of the proposed DC-AELM method.
33#
發(fā)表于 2025-3-27 05:46:29 | 只看該作者
34#
發(fā)表于 2025-3-27 10:17:21 | 只看該作者
The Geography of Design in the Cityntal results demonstrate that the HSVM model outperforms other classifiers in general. Also, HSVM classifier preliminarily shows its superiority in solution to discrimination in various electronic nose applications.
35#
發(fā)表于 2025-3-27 13:55:34 | 只看該作者
Costs of Energy and Drying Equipment,n; second, in the process of establishing classifiers ensemble, a new fusion approach conducting an effective base classifier weighted method is proposed. Experimental results show that the average classification accuracy of the proposed method has been significantly improved over base classifiers and majority voting-based fusion strategy.
36#
發(fā)表于 2025-3-27 18:49:07 | 只看該作者
Paul R. Ferguson,Glenys J. Fergusonansfer learning, especially from the perspective of domain correction and decision making, to realize the knowledge transfer for interference suppression and drift compensation. Experiments on a background interference dataset and a public benchmark sensor drift dataset via E-nose verify the effectiveness of the proposed DC-AELM method.
37#
發(fā)表于 2025-3-28 01:35:45 | 只看該作者
Book 2018aling to readers from the fields of artificial intelligence, computer science, electrical engineering, electronics, and instrumentation science, it addresses three main areas: First, readers will learn how to apply machine learning, pattern recognition and signal processing algorithms to real percep
38#
發(fā)表于 2025-3-28 04:12:31 | 只看該作者
Work Autonomy and Product Innovation,work. We present the performance of a particle swarm optimization technique, an adaptive genetic strategy, and a back-propagation artificial neural network approach to perform concentration estimation of chemical gases and improve the intelligence of an E-nose.
39#
發(fā)表于 2025-3-28 09:54:47 | 只看該作者
Pfadwechsel — schwierig aber notwendigmonstrates the obvious chaotic behavior through the Lyapunov exponents. Results demonstrate that the proposed model can make long-term and accurate prediction of time series chemical sensor baseline and drift.
40#
發(fā)表于 2025-3-28 14:03:40 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 06:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
汶川县| 西城区| 湖州市| 张家界市| 水城县| 嘉荫县| 新丰县| 阿克| 定安县| 黄浦区| 汉寿县| 临海市| 新田县| 赤城县| 静宁县| 涿鹿县| 武陟县| 诸暨市| 台山市| 嘉义县| 建湖县| 綦江县| 阿巴嘎旗| 阿合奇县| 金堂县| 天峻县| 油尖旺区| 泰来县| 安溪县| 从化市| 剑河县| 溧水县| 津市市| 康乐县| 侯马市| 辉南县| 黄山市| 日照市| 萨嘎县| 德州市| 汾阳市|