找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Electromagnetic Wave Scattering on Nonspherical Particles; Basic Methodology an Tom Rother,Michael Kahnert Book 2014Latest edition Springer

[復(fù)制鏈接]
樓主: 調(diào)戲
21#
發(fā)表于 2025-3-25 03:41:40 | 只看該作者
Springer Series in Optical Scienceshttp://image.papertrans.cn/e/image/306045.jpg
22#
發(fā)表于 2025-3-25 09:51:32 | 只看該作者
23#
發(fā)表于 2025-3-25 12:05:56 | 只看該作者
24#
發(fā)表于 2025-3-25 18:04:33 | 只看該作者
25#
發(fā)表于 2025-3-25 20:37:03 | 只看該作者
Introduction. Technical Applications,Frequently alluded in the foregoing chapters, we will now deal in more detail with the problem of Rayleigh’s hypothesis. In 1907, Lord Rayleigh published a paper on the dynamic theory of gratings, as mentioned earlier in Chap.?1
26#
發(fā)表于 2025-3-26 03:15:21 | 只看該作者
First Approach to the Green Functions: The Rayleigh Method,In Sect. 1.3 we have considered a solution method for the scattering problems which was already used by Rayleigh to solve plane wave scattering on periodic gratings. Starting point was the approximation (1.21) of the scattered field by a finite series expansion in terms of any appropriate expansion functions.
27#
發(fā)表于 2025-3-26 05:20:54 | 只看該作者
The Rayleigh Hypothesis,Frequently alluded in the foregoing chapters, we will now deal in more detail with the problem of Rayleigh’s hypothesis. In 1907, Lord Rayleigh published a paper on the dynamic theory of gratings, as mentioned earlier in Chap.?1
28#
發(fā)表于 2025-3-26 08:27:39 | 只看該作者
29#
發(fā)表于 2025-3-26 12:44:02 | 只看該作者
30#
發(fā)表于 2025-3-26 20:26:17 | 只看該作者
Conduction with Heat Generation,ary incident field at the scatterer surface . in terms of the radiating eigensolutions of the Helmholtz and vector-wave equation, respectively. From this we could obtain an approximation of the scattered field everywhere in the outer region . which is also given by a series expansion in terms of the
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 14:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
瑞安市| 满城县| 城步| 宁河县| 高阳县| 万盛区| 平江县| 江都市| 桃园市| 绥江县| 卓资县| 荥阳市| 封丘县| 武穴市| 沾益县| 麻江县| 巴塘县| 临西县| 连平县| 安溪县| 定襄县| 百色市| 利川市| 栾川县| 龙南县| 安西县| 万年县| 灵台县| 南丰县| 湘乡市| 池州市| 清涧县| 彭山县| 甘泉县| 天全县| 革吉县| 松滋市| 乐亭县| 孟津县| 广安市| 自治县|