找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Electromagnetic Wave Propagation in Turbulence; Evaluation and Appli Richard J. Sasiela Book 1994 Springer-Verlag Berlin Heidelberg 1994 In

[復(fù)制鏈接]
樓主: T-Lymphocyte
21#
發(fā)表于 2025-3-25 07:20:03 | 只看該作者
22#
發(fā)表于 2025-3-25 07:51:42 | 只看該作者
23#
發(fā)表于 2025-3-25 11:49:02 | 只看該作者
24#
發(fā)表于 2025-3-25 18:05:32 | 只看該作者
Mellin Transforms in , Complex Planes,al transform coordinate in which there are two or more parameters in the integrand is addressed in this chapter. I show that it can be evaluated to give a series solution. The remaining integration over the propagation path can be performed term by term in most cases. For some cases the infinite ser
25#
發(fā)表于 2025-3-25 22:32:21 | 只看該作者
26#
發(fā)表于 2025-3-26 01:19:09 | 只看該作者
Basic Equations for Wave Propagation in Turbulence,uations are solved with the Rytov approximation, and the main result is given in (2.85), which is the starting point for all turbulence problems considered in this book. This equation is used to find phase and log-amplitude variances. These expressions are modified to obtain expressions for the powe
27#
發(fā)表于 2025-3-26 08:20:17 | 只看該作者
28#
發(fā)表于 2025-3-26 10:06:33 | 只看該作者
29#
發(fā)表于 2025-3-26 13:26:30 | 只看該作者
Integral Evaluation with Mellin Transforms,rmalization, the wavenumber (.) integration can be expressed in a standard form depending only on zero, one, or more parameters. If no parameters are present, the integration is performed simply by table lookup as was done in the last chapter. The one parameter case requires a transformation of the
30#
發(fā)表于 2025-3-26 19:38:42 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 19:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
伊春市| 双流县| 日喀则市| 岚皋县| 古丈县| 盘锦市| 阳新县| 平凉市| 吴忠市| 郎溪县| 舟曲县| 漳州市| 海晏县| 五常市| 聂拉木县| 禹城市| 井研县| 津南区| 芦溪县| 腾冲县| 衡水市| 嫩江县| 安丘市| 广州市| 台山市| 佛山市| 宜春市| 应城市| 阳东县| 开封县| 余江县| 沛县| 凤台县| 将乐县| 茌平县| 兰考县| 临汾市| 黔西| 昭通市| 大余县| 文安县|