找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Electromagnetic Wave Propagation in Turbulence; Evaluation and Appli Richard J. Sasiela Book 1994 Springer-Verlag Berlin Heidelberg 1994 In

[復(fù)制鏈接]
樓主: T-Lymphocyte
21#
發(fā)表于 2025-3-25 07:20:03 | 只看該作者
22#
發(fā)表于 2025-3-25 07:51:42 | 只看該作者
23#
發(fā)表于 2025-3-25 11:49:02 | 只看該作者
24#
發(fā)表于 2025-3-25 18:05:32 | 只看該作者
Mellin Transforms in , Complex Planes,al transform coordinate in which there are two or more parameters in the integrand is addressed in this chapter. I show that it can be evaluated to give a series solution. The remaining integration over the propagation path can be performed term by term in most cases. For some cases the infinite ser
25#
發(fā)表于 2025-3-25 22:32:21 | 只看該作者
26#
發(fā)表于 2025-3-26 01:19:09 | 只看該作者
Basic Equations for Wave Propagation in Turbulence,uations are solved with the Rytov approximation, and the main result is given in (2.85), which is the starting point for all turbulence problems considered in this book. This equation is used to find phase and log-amplitude variances. These expressions are modified to obtain expressions for the powe
27#
發(fā)表于 2025-3-26 08:20:17 | 只看該作者
28#
發(fā)表于 2025-3-26 10:06:33 | 只看該作者
29#
發(fā)表于 2025-3-26 13:26:30 | 只看該作者
Integral Evaluation with Mellin Transforms,rmalization, the wavenumber (.) integration can be expressed in a standard form depending only on zero, one, or more parameters. If no parameters are present, the integration is performed simply by table lookup as was done in the last chapter. The one parameter case requires a transformation of the
30#
發(fā)表于 2025-3-26 19:38:42 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 19:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
易门县| 阿巴嘎旗| 杭州市| 通化县| 连江县| 九江市| 邓州市| 天峻县| 泽库县| 吉安县| 根河市| 麻江县| 涟水县| 灵台县| 越西县| 永济市| 修武县| 耿马| 怀化市| 苍南县| 唐山市| 茌平县| 洛川县| 曲沃县| 滕州市| 隆子县| 彩票| 昌邑市| 南漳县| 阳高县| 湖北省| 华宁县| 临邑县| 平原县| 宁德市| 临沭县| 台北市| 海淀区| 望江县| 湛江市| 响水县|