找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Electromagnetic Fields and Waves in Fractional Dimensional Space; Muhammad Zubair,Muhammad Junaid Mughal,Qaisar Abba Book 2012 The Editor(

[復(fù)制鏈接]
樓主: Annihilate
21#
發(fā)表于 2025-3-25 05:51:36 | 只看該作者
22#
發(fā)表于 2025-3-25 09:49:05 | 只看該作者
Introduction, fills the Euclidean space in which it lies. Since, a medium composed of such fractal objects can be considered as non-integer dimensional fractal media, the analytical results of this work provide the necessary tools for analyzing the behavior of electromagnetic fields and waves in it.
23#
發(fā)表于 2025-3-25 13:37:36 | 只看該作者
24#
發(fā)表于 2025-3-25 17:25:23 | 只看該作者
Electromagnetic Wave Propagation in Fractional Space,ectively describe the wave propagation phenomenon in fractal media. In this chapter, exact solutions of different forms of wave equation in .-dimensional fractional space are provided, which describe the phenomenon of electromagnetic wave propagation in fractional space.
25#
發(fā)表于 2025-3-25 21:09:43 | 只看該作者
2191-530X ents the concept of fractional dimensional space applied to the use of electromagnetic fields and waves.? It provides demonstrates the advantages in studying? the behavior of electromagnetic fields and waves in fractal media. .The book presents novel fractional space generalization of the differenti
26#
發(fā)表于 2025-3-26 00:35:43 | 只看該作者
Eine praxisorientierte Fortbildungsreihebeen worked out in fractional space. The differential electromagnetic equations in fractional space, established in this chapter, provide a basis for application of the concept of fractional space in practical electromagnetic wave propagation and scattering problems in fractal media.
27#
發(fā)表于 2025-3-26 04:18:46 | 只看該作者
28#
發(fā)表于 2025-3-26 11:00:34 | 只看該作者
29#
發(fā)表于 2025-3-26 13:57:43 | 只看該作者
2191-530X d vector differential operators, the classical Maxwell‘s electromagnetic equations are worked out. The Laplace‘s, Poisson‘s and Helmholtz‘s equations in fractional space are derived by using modified vector differential operators.978-3-642-25357-7978-3-642-25358-4Series ISSN 2191-530X Series E-ISSN 2191-5318
30#
發(fā)表于 2025-3-26 20:39:52 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 20:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
江川县| 凌源市| 拉萨市| 海城市| 缙云县| 合山市| 年辖:市辖区| 武义县| 嫩江县| 英德市| 晋中市| 新巴尔虎左旗| 自贡市| 汕尾市| 读书| 南木林县| 常州市| 萍乡市| 永靖县| 翼城县| 噶尔县| 聂拉木县| 连平县| 大名县| 临颍县| 辽阳县| 鹿泉市| 星座| 县级市| 盘山县| 诏安县| 两当县| 南澳县| 洪湖市| 高雄县| 宝坻区| 长泰县| 夏津县| 天气| 峨眉山市| 三原县|