找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Electromagnetic Brain Imaging; A Bayesian Perspecti Kensuke Sekihara,Srikantan S. Nagarajan Textbook 2015 Springer International Publishing

[復(fù)制鏈接]
查看: 34585|回復(fù): 40
樓主
發(fā)表于 2025-3-21 18:19:17 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Electromagnetic Brain Imaging
副標(biāo)題A Bayesian Perspecti
編輯Kensuke Sekihara,Srikantan S. Nagarajan
視頻videohttp://file.papertrans.cn/306/305971/305971.mp4
概述Provides a theoretical framework for source imaging methodology.Specific focus on Bayesian algorithms.Unique approach to the recent advances.Includes supplementary material:
圖書封面Titlebook: Electromagnetic Brain Imaging; A Bayesian Perspecti Kensuke Sekihara,Srikantan S. Nagarajan Textbook 2015 Springer International Publishing
描述.This graduate level textbook provides a coherent introduction to the body of main-stream algorithms used in electromagnetic brain imaging, with specific emphasis on novel Bayesian algorithms. It helps readers to more easily understand literature in biomedical engineering and related fields and be ready to pursue research in either the engineering or the neuroscientific aspects of electromagnetic brain imaging. This textbook will not only appeal to graduate students but all scientists and engineers engaged in research on electromagnetic brain imaging..
出版日期Textbook 2015
關(guān)鍵詞Bayesian algorithms; Brain source reconstruction methods using MEG and EEG; Electromagnetic brain imag
版次1
doihttps://doi.org/10.1007/978-3-319-14947-9
isbn_softcover978-3-319-35643-3
isbn_ebook978-3-319-14947-9
copyrightSpringer International Publishing Switzerland 2015
The information of publication is updating

書目名稱Electromagnetic Brain Imaging影響因子(影響力)




書目名稱Electromagnetic Brain Imaging影響因子(影響力)學(xué)科排名




書目名稱Electromagnetic Brain Imaging網(wǎng)絡(luò)公開度




書目名稱Electromagnetic Brain Imaging網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Electromagnetic Brain Imaging被引頻次




書目名稱Electromagnetic Brain Imaging被引頻次學(xué)科排名




書目名稱Electromagnetic Brain Imaging年度引用




書目名稱Electromagnetic Brain Imaging年度引用學(xué)科排名




書目名稱Electromagnetic Brain Imaging讀者反饋




書目名稱Electromagnetic Brain Imaging讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:57:07 | 只看該作者
Zeolithe mit schwankendem SiO2-GehaltIn this chapter, we provide a detailed description of an algorithm for electromagnetic brain imaging, called the Champagne algorithm [., .].
板凳
發(fā)表于 2025-3-22 00:55:57 | 只看該作者
C. Doelter,Emil Baur,M. Dittrich,L. JesserThis chapter describes Bayesian factor analysis (BFA), which is a technique that can decompose multiple sensor time courses into time courses of independent factor activities, where the number of factors is much smaller than the number of sensors.
地板
發(fā)表于 2025-3-22 08:14:23 | 只看該作者
G. d’Achiardi,R. Amberg,E. ZschimmerMagnetoencephalography (MEG) and related electroencephalography (EEG) use an array of sensors to take electromagnetic field (or voltage) measurements from on or near the scalp surface with excellent temporal resolution.
5#
發(fā)表于 2025-3-22 12:05:46 | 只看該作者
Lagerung und Belastung der Modelle,There has been tremendous interest in estimating the functional connectivity of neuronal activities across different brain regions using electromagnetic brain imaging.
6#
發(fā)表于 2025-3-22 16:15:09 | 只看該作者
,Rechenprogramme für die Netzplantechnik,This chapter reviews the methodology for estimating causal relationships among cortical activities in MEG/EEG source space analysis.
7#
發(fā)表于 2025-3-22 18:35:13 | 只看該作者
https://doi.org/10.1007/978-3-642-50784-7Neural oscillations across multiple frequency bands have consistently been observed in EEG and MEG recordings.
8#
發(fā)表于 2025-3-22 21:37:49 | 只看該作者
9#
發(fā)表于 2025-3-23 04:52:13 | 只看該作者
Sparse Bayesian (Champagne) Algorithm,In this chapter, we provide a detailed description of an algorithm for electromagnetic brain imaging, called the Champagne algorithm [., .].
10#
發(fā)表于 2025-3-23 05:37:03 | 只看該作者
Bayesian Factor Analysis: A Versatile Framework for Denoising, Interference Suppression, and SourceThis chapter describes Bayesian factor analysis (BFA), which is a technique that can decompose multiple sensor time courses into time courses of independent factor activities, where the number of factors is much smaller than the number of sensors.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 06:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
郁南县| 许昌县| 玉环县| 吉林省| 龙陵县| 昔阳县| 仙游县| 鄂尔多斯市| 和平区| 景泰县| 白银市| 沈丘县| 高平市| 富源县| 米易县| 定结县| 商城县| 溧阳市| 新疆| 巴里| 和龙市| 马尔康县| 嫩江县| 米林县| 肃宁县| 阿合奇县| 武夷山市| 玛曲县| 库尔勒市| 朝阳市| 新乡县| 重庆市| 黄大仙区| 遂川县| 定安县| 商洛市| 四子王旗| 黄平县| 白朗县| 陆丰市| 扶沟县|