找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elastic and Thermoelastic Problems in Nonlinear Dynamics of Structural Members; Applications of the Jan Awrejcewicz,Vadim A. Krysko Book 2

[復(fù)制鏈接]
樓主: HAG
51#
發(fā)表于 2025-3-30 11:03:13 | 只看該作者
52#
發(fā)表于 2025-3-30 14:19:18 | 只看該作者
53#
發(fā)表于 2025-3-30 20:20:09 | 只看該作者
54#
發(fā)表于 2025-3-30 22:24:43 | 只看該作者
https://doi.org/10.1007/978-3-642-94619-6he next section, boundary and initial conditions are attached to the differential equations. In Sect. 5.4, the existence and uniqueness of a solution as well as the convergence of the Bubnov–Galerkin method, are rigorously discussed.
55#
發(fā)表于 2025-3-31 02:28:23 | 只看該作者
Forschungsdesign und methodisches Vorgehen,ic problems of shallow shells modelled by the Kirchhoff–Love and Timoshenko theories defined earlier. In Sect. 2.1.5, theorems related to the existence and uniqueness of a general, “classical” solution to the coupled abstract program are given, and then the corresponding theorems for coupled thermoelastic problems of shallow shells are formulated.
56#
發(fā)表于 2025-3-31 08:58:59 | 只看該作者
57#
發(fā)表于 2025-3-31 10:38:39 | 只看該作者
58#
發(fā)表于 2025-3-31 17:12:38 | 只看該作者
Coupled Thermoelasticity and Transonic Gas Flow,ic problems of shallow shells modelled by the Kirchhoff–Love and Timoshenko theories defined earlier. In Sect. 2.1.5, theorems related to the existence and uniqueness of a general, “classical” solution to the coupled abstract program are given, and then the corresponding theorems for coupled thermoelastic problems of shallow shells are formulated.
59#
發(fā)表于 2025-3-31 19:25:19 | 只看該作者
,Estimation of the Errors of the Bubnov–Galerkin Method,d discussed. Finally, a prior estimate for the Bubnov–Galerkin method to a problem generalizing a class of dynamical problems of elasticity (without a heat transfer equation) for both three-dimensional and thin-walled elements of structures is given.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 16:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
中西区| 徐州市| 临漳县| 梅河口市| 建德市| 锦州市| 中方县| 玉田县| 浙江省| 永吉县| 桐庐县| 蒙城县| 周宁县| 图们市| 磐石市| 稷山县| 麦盖提县| 太原市| 贵南县| 和田市| 镇巴县| 洛扎县| 竹山县| 扶余县| 黄梅县| 鄂伦春自治旗| 石楼县| 临沧市| 平度市| 江城| 高安市| 富阳市| 韶关市| 淮滨县| 葵青区| 同德县| 荃湾区| 银川市| 嘉义县| 喀喇| 全州县|