找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Einstein‘s General Theory of Relativity; With Modern Applicat ?yvind Gr?n,Sigbj?rn Hervik Textbook 2007 Springer-Verlag New York 2007 Cosmo

[復(fù)制鏈接]
樓主: CHARY
21#
發(fā)表于 2025-3-25 05:30:51 | 只看該作者
https://doi.org/10.1007/978-3-662-28706-4In this chapter we will perform a 3+1 decomposition of the spacetime. This decomposition is very useful for various applications, in particular, we will use the 3+1 decomposition to derive a Lagrangian and Hamiltonian formalismof general relativity. We will also see howthe singularity theoremcan be described in this framework.
22#
發(fā)表于 2025-3-25 10:56:07 | 只看該作者
Relativity Principles and GravitationTo obtain a mathematical description of physical phenomena, it is advantageous to introduce a reference frame in order to keep track of the position of events in space and time. The choice of reference frame has historically depended upon the view of human beings and their position in the Universe.
23#
發(fā)表于 2025-3-25 13:30:08 | 只看該作者
24#
發(fā)表于 2025-3-25 17:26:15 | 只看該作者
25#
發(fā)表于 2025-3-25 23:07:49 | 只看該作者
Non-inertial Reference FramesIn this chapter we shall consider some consequences of the formalism developed so far, by studying the relativistic kinematics in two types of non-inertial reference frames: the rotating reference frame and the uniformly accelerating reference frame.
26#
發(fā)表于 2025-3-26 03:15:15 | 只看該作者
Covariant Decomposition, Singularities, and Canonical CosmologyIn this chapter we will perform a 3+1 decomposition of the spacetime. This decomposition is very useful for various applications, in particular, we will use the 3+1 decomposition to derive a Lagrangian and Hamiltonian formalismof general relativity. We will also see howthe singularity theoremcan be described in this framework.
27#
發(fā)表于 2025-3-26 05:43:20 | 只看該作者
28#
發(fā)表于 2025-3-26 12:18:55 | 只看該作者
29#
發(fā)表于 2025-3-26 16:03:43 | 只看該作者
30#
發(fā)表于 2025-3-26 18:51:56 | 只看該作者
https://doi.org/10.1007/978-3-8349-6454-0d gravitational masses, was that there is no gravitational force at all. What is said to be “particle motion under the influence of the gravitational force” in Newtonian theory, is according to the general theory of relativity, free motion along geodesic curves in a curved space-time.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 19:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
隆化县| 安远县| 东阳市| 岑溪市| 神池县| 莎车县| 鸡东县| 内黄县| 南康市| 昭觉县| 沾益县| 辽宁省| 彰化县| 南召县| 巍山| 武陟县| 南充市| 伊金霍洛旗| 福泉市| 昌邑市| 成安县| 醴陵市| 藁城市| 南岸区| 九台市| 西平县| 沅陵县| 京山县| 南华县| 赤壁市| 时尚| 涡阳县| 武隆县| 香港| 桑日县| 乌拉特前旗| 修文县| 井陉县| 庆阳市| 平遥县| 肇州县|