找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Einstein‘s General Theory of Relativity; With Modern Applicat ?yvind Gr?n,Sigbj?rn Hervik Textbook 2007 Springer-Verlag New York 2007 Cosmo

[復(fù)制鏈接]
樓主: CHARY
21#
發(fā)表于 2025-3-25 05:30:51 | 只看該作者
https://doi.org/10.1007/978-3-662-28706-4In this chapter we will perform a 3+1 decomposition of the spacetime. This decomposition is very useful for various applications, in particular, we will use the 3+1 decomposition to derive a Lagrangian and Hamiltonian formalismof general relativity. We will also see howthe singularity theoremcan be described in this framework.
22#
發(fā)表于 2025-3-25 10:56:07 | 只看該作者
Relativity Principles and GravitationTo obtain a mathematical description of physical phenomena, it is advantageous to introduce a reference frame in order to keep track of the position of events in space and time. The choice of reference frame has historically depended upon the view of human beings and their position in the Universe.
23#
發(fā)表于 2025-3-25 13:30:08 | 只看該作者
24#
發(fā)表于 2025-3-25 17:26:15 | 只看該作者
25#
發(fā)表于 2025-3-25 23:07:49 | 只看該作者
Non-inertial Reference FramesIn this chapter we shall consider some consequences of the formalism developed so far, by studying the relativistic kinematics in two types of non-inertial reference frames: the rotating reference frame and the uniformly accelerating reference frame.
26#
發(fā)表于 2025-3-26 03:15:15 | 只看該作者
Covariant Decomposition, Singularities, and Canonical CosmologyIn this chapter we will perform a 3+1 decomposition of the spacetime. This decomposition is very useful for various applications, in particular, we will use the 3+1 decomposition to derive a Lagrangian and Hamiltonian formalismof general relativity. We will also see howthe singularity theoremcan be described in this framework.
27#
發(fā)表于 2025-3-26 05:43:20 | 只看該作者
28#
發(fā)表于 2025-3-26 12:18:55 | 只看該作者
29#
發(fā)表于 2025-3-26 16:03:43 | 只看該作者
30#
發(fā)表于 2025-3-26 18:51:56 | 只看該作者
https://doi.org/10.1007/978-3-8349-6454-0d gravitational masses, was that there is no gravitational force at all. What is said to be “particle motion under the influence of the gravitational force” in Newtonian theory, is according to the general theory of relativity, free motion along geodesic curves in a curved space-time.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 00:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
平江县| 兴义市| 池州市| 永仁县| 孝昌县| 霍邱县| 松溪县| 双流县| 博罗县| 镇远县| 南丹县| 理塘县| 河南省| 华亭县| 财经| 崇仁县| 博爱县| 长治县| 乌拉特前旗| 弋阳县| 永清县| 石狮市| 岑巩县| 喀喇| 鹤壁市| 合水县| 明溪县| 广宁县| 临洮县| 赞皇县| 怀远县| 犍为县| 乌海市| 南陵县| 牙克石市| 锡林郭勒盟| 烟台市| 隆回县| 南漳县| 临泉县| 昌黎县|