找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Einsatz numerischer N?herungsverfahren bei der Berechnung von Verfahren der Kaltmassivumformung; Karl Roll Book 1982 Springer-Verlag, Berl

[復(fù)制鏈接]
樓主: 即將過時
21#
發(fā)表于 2025-3-25 06:26:23 | 只看該作者
22#
發(fā)表于 2025-3-25 11:23:54 | 只看該作者
23#
發(fā)表于 2025-3-25 13:58:29 | 只看該作者
24#
發(fā)表于 2025-3-25 17:47:21 | 只看該作者
,Grunds?tliche Darstellung der verwendeten L?sungsverfahren,Die Methode der finiten Elemente (FEM) ist in den letzten Jah-ren zu einem Standardverfahren bei der Bearbeitung zahlreicher Probleme geworden. Hier sind vor allem Probleme der Elastostatik zu nennen, die durch ihr lineares Stoffgesetz für diese Methode sehr gut geeignet sind und ma?geblich zur Entwicklung dieses Verfahrens beigetragen haben.
25#
發(fā)表于 2025-3-25 23:47:21 | 只看該作者
26#
發(fā)表于 2025-3-26 03:19:37 | 只看該作者
27#
發(fā)表于 2025-3-26 06:55:45 | 只看該作者
Stand der Erkenntnisse,egen. Eine strenge L?sung der plastizitatstheoretischen Grundgleichungen ist bei der Be-handlung von praktischen Problemen meist nur durch erhebliche Vereinfachung der Aufgabenstellung m?glich (Bild 1). Die sich durch solche Vereinfachungen ergebenden L?sungsmethoden sind als sogenannte“elementare”
28#
發(fā)表于 2025-3-26 10:53:31 | 只看該作者
,Grundlagen der Programmentwicklung für die einzelnen N?herungsverfahren,Dehnungsinkrementen werden mit Hilfe von Gl. (9) die plastischen Spannungsinkremente be-rechnet. Für die einzelnen Verzerrungszust?nde ergeben sich dabei unterschiedliche Matrizen für den elastisch-plastischen Bereich.
29#
發(fā)表于 2025-3-26 13:17:23 | 只看該作者
,Vergleich der numerischen N?herungsverfahren, einer direkten me?technischen über-prüfung. In diesem Kapitel sollen deshalb die Ergebnisse, die mit den einzelnen Verfahren erzielt wurden, miteinander ver-glichen werden und auf diesem Wege Aussagen über die Genauig-keit der Verfahren abgeleitet werden.
30#
發(fā)表于 2025-3-26 17:08:35 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 19:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
汉沽区| 四子王旗| 怀远县| 嘉黎县| 夏邑县| 南京市| 新干县| 南木林县| 镇赉县| 常德市| 保康县| 北碚区| 连云港市| 衢州市| 公安县| 黔东| 客服| 昌宁县| 无极县| 安庆市| 东丽区| 井冈山市| 永善县| 晋宁县| 宜兴市| 江北区| 宁化县| 临夏县| 淄博市| 盈江县| 治县。| 东至县| 页游| 宾川县| 出国| 宜黄县| 大同县| 西充县| 闻喜县| 横山县| 登封市|