找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Einige Klassen Singul?rer Gleichungen; Siegfried Pr?ssdorf Book 1974 Springer Basel AG 1974 Integral.Integralgleichung.Gleichung

[復(fù)制鏈接]
樓主: 愚蠢地活
21#
發(fā)表于 2025-3-25 05:05:49 | 只看該作者
22#
發(fā)表于 2025-3-25 08:37:29 | 只看該作者
23#
發(fā)表于 2025-3-25 13:35:34 | 只看該作者
Noethersche Operatoren,genschaften: Sie sind normal aufl?sbar und besitzen einen endlichen Index. Solche Operatoren werden heute allgemein als .che Operatoren (kurz Φ-Operatoren) bezeichnet. Für sie existiert eine v?llig geschlossene Theorie, zumindest im Falle abgeschlossener Operatoren in .- R?umen bzw. stetiger Operatoren in lokalkonvexen R?umen.
24#
發(fā)表于 2025-3-25 18:03:26 | 只看該作者
,Abstrakte Singul?re Gleichungen vom Normaltyp,ruiert und ihre wichtigsten Eigenschaften untersucht. Dabei wird u. a. auf Fragen der Faktorisierung von Funktionen und deren Anwendung auf die Invertierung von Operatoren aus dieser Algebra eingegangen.
25#
發(fā)表于 2025-3-25 22:01:12 | 只看該作者
,Singul?re Gleichungen in einigen abz?hlbar-normierten R?umen und Distributionsr?umen,eorie im Raum ..(Γ): Der singul?re Integraloperator (mit Koeffizieaten aus ..(Γ)) ist dann und nur dann ein .cher Operator, wenn sein Symbol h?chstens endlich viele Nullstellen endlicher Ordnungen besitzt.
26#
發(fā)表于 2025-3-26 03:21:57 | 只看該作者
27#
發(fā)表于 2025-3-26 07:50:43 | 只看該作者
,Singul?re Integralgleichungen vom Nicht Normalen Typ,in verschiedenen F?llen der Entartung des Symbols formuliert sind. Am Schlu? wird die Frage der Existenz und Konstruktion eines Regularisators und ?quivalenten Regularisators des singul?ren Integraloperators vom nicht normalen Typ im Raum .. untersucht.
28#
發(fā)表于 2025-3-26 12:33:05 | 只看該作者
Introduction to Electric Circuits,ruiert und ihre wichtigsten Eigenschaften untersucht. Dabei wird u. a. auf Fragen der Faktorisierung von Funktionen und deren Anwendung auf die Invertierung von Operatoren aus dieser Algebra eingegangen.
29#
發(fā)表于 2025-3-26 16:15:18 | 只看該作者
https://doi.org/10.1007/978-981-99-0791-5eorie im Raum ..(Γ): Der singul?re Integraloperator (mit Koeffizieaten aus ..(Γ)) ist dann und nur dann ein .cher Operator, wenn sein Symbol h?chstens endlich viele Nullstellen endlicher Ordnungen besitzt.
30#
發(fā)表于 2025-3-26 18:54:48 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-26 15:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
上虞市| 崇阳县| 布拖县| 南宁市| 湘潭县| 碌曲县| 岗巴县| 柘荣县| 寿宁县| 贡嘎县| 蚌埠市| 乌拉特后旗| 蕲春县| 东丰县| 资源县| 新绛县| 社旗县| 玉门市| 兴安盟| 平塘县| 武清区| 梁河县| 西青区| 德安县| 麻江县| 清涧县| 娱乐| 灌云县| 昂仁县| 扎兰屯市| 九龙坡区| 乌苏市| 喀喇| 北辰区| 曲周县| 皋兰县| 昂仁县| 新兴县| 西宁市| 安塞县| 麻栗坡县|