找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Einführung in die mathematische Behandlung der Naturwissenschaften; Hans Heiner Storrer Book 19892nd edition Springer Basel AG 1989 Ableit

[復(fù)制鏈接]
樓主: STH
41#
發(fā)表于 2025-3-28 15:11:14 | 只看該作者
Anwendungen der AbleitungIn diesem Kapitel werden einige Anwendungen der Ableitung besprochen und zwar haupts?chlich.Diese Dinge geh?ren normalerweise zum Mittelschulstoff; es geht hier haupts?chlich darum, die wichtigsten Tatsachen in Erinnerung zu rufen und vielleicht das eine oder andere Detail zu pr?zisieren.
42#
發(fā)表于 2025-3-28 21:50:49 | 只看該作者
Das DifferentialIn manchen F?llen ist es zur Vereinfachung einer Rechnung zweckm?ssig, eine gegebene Funktion in der N?he einer Stelle x. durch eine .. Geometrisch heisst dies, dass man den Graphen der Funktion durch seine Tangente an der Stelle x. ersetzt.
43#
發(fā)表于 2025-3-29 02:23:26 | 只看該作者
Das Bestimmte IntegralGestützt auf die Beispiele in Kapitel 9 wird das . — losgel?st von speziellen Anwendungen — als Limes von .. definiert und im Detail besprochen.
44#
發(fā)表于 2025-3-29 03:42:16 | 只看該作者
Der Hauptsatz der Differential- und IntegralrechnungDer Hauptsatz der Differential- und Integralrechnung lautet: . wo F eine Stammfunktion von f ist, d.h. eine Funktion, deren Ableitung gleich f ist (F′= f).
45#
發(fā)表于 2025-3-29 10:12:49 | 只看該作者
Stammfunktionen und das Unbestimmte IntegralDer Hauptsatz der Differential- und Integralrechnung führt die Berechnung von bestimmten Integralen auf das Auffinden von Stammfunktionen zurück. Eine Stammfunktion von f(x) wird auch mit . (unbestimmtes Integral) bezeichnet.
46#
發(fā)表于 2025-3-29 12:01:09 | 只看該作者
IntegrationsmethodenIn Kapitel 12 haben wir die.zur Berechnung von Integralen kennengelernt.
47#
發(fā)表于 2025-3-29 17:40:36 | 只看該作者
Der Begriff der DifferentialgleichungIn diesem Kapitel wird der Begriff der Differentialgleichung eingeführt. An verschiedenen Beispielen wird gezeigt, wie man auf solche Differentialgleichungen kommt.
48#
發(fā)表于 2025-3-29 21:44:21 | 只看該作者
UmkehrfunktionenDie Funktion g heisst die . der Funktion f (oder die zu f inverse Funktion), wenn für alle x aus dem Definitionsbereich von f und alle y aus dem Definitionsbereich von g gilt
49#
發(fā)表于 2025-3-30 01:36:42 | 只看該作者
50#
發(fā)表于 2025-3-30 07:31:47 | 只看該作者
Nichtlineare SkalenFunktionale Zusammenh?nge, die bei der (üblichen) graphischen Darstellung durch gekrümmte Kurven dargestellt werden, k?nnen oft durch Wahl eines nicht-linearen Koordinatensystems, d.h. eines Systems mit ?verzerrten Skalen“ auf den Achsen durch eine Gerade beschrieben werden, was praktische Vorteile bietet.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 04:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
谷城县| 铜陵市| 曲阳县| 淄博市| 灌阳县| 达州市| 惠州市| 洞头县| 马关县| 安国市| 桂阳县| 绥阳县| 彭水| 镇江市| 平谷区| 于都县| 邮箱| 汪清县| 新兴县| 禄丰县| 六盘水市| 黑山县| 大足县| 泸溪县| 德昌县| 紫阳县| 安康市| 镇坪县| 浦北县| 大新县| 九寨沟县| 宜宾市| 梁平县| 舞阳县| 许昌市| 汝阳县| 晴隆县| 揭东县| 旌德县| 泽库县| 两当县|