找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Einführung in die Systemtheorie; Bernd Girod,Rudolf Rabenstein,Alexander Stenger Book 1997Latest edition Springer Fachmedien Wiesbaden 199

[復制鏈接]
樓主: 遮蔽
31#
發(fā)表于 2025-3-26 21:15:39 | 只看該作者
Analyse zeitkontinuierlicher LTI-Systeme mit der Laplace-Transformation,e Beschreibung der Eigenschaften von LTI-Systemen. In der System- und Netzwerktheorie ist sie zur Standardmethode für die Berechnung der Systemreaktion geworden. Insbesondere k?nnen vorgegebene Anfangswerte des Ausgangssignals und Anfangszust?nde von Systemen berücksichtigt werden.
32#
發(fā)表于 2025-3-27 03:38:35 | 只看該作者
33#
發(fā)表于 2025-3-27 09:01:46 | 只看該作者
Diskrete Signale und ihr Spektrum, Natur vorkommenden kontinuierlichen Signalen zu abgetasteten Signalen, die für eine digitale Verarbeitung n?tig sind, haben wir in Kapitel 11 vollzogen. Der Definitionsbereich der abgetasteten Signale war immer noch eine kontinuierliche (Zeit)-Variable, so da? wir die bekannten Werkzeuge, u.a. die Fourier-Transformation, verwenden konnten.
34#
發(fā)表于 2025-3-27 10:40:58 | 只看該作者
35#
發(fā)表于 2025-3-27 16:48:35 | 只看該作者
36#
發(fā)表于 2025-3-27 19:51:07 | 只看該作者
Laplace-Transformation, Berechnung der zugeh?rigen Ausgangssignale relativ einfach durchzuführen ist. Leider sind die in der Realit?t vorkommenden Signale (siehe Kapitel 1) aber keine Eigenfunktionen von LTI-Systemen. Als Ausweg bietet sich an, beliebige Signale .(.) durch eine überlagerung von Eigenfunktionen .. mit unte
37#
發(fā)表于 2025-3-28 02:00:01 | 只看該作者
38#
發(fā)表于 2025-3-28 03:16:37 | 只看該作者
39#
發(fā)表于 2025-3-28 09:32:38 | 只看該作者
40#
發(fā)表于 2025-3-28 10:53:09 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 06:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
天等县| 南溪县| 马龙县| 临桂县| 正安县| 固原市| 福海县| 宁阳县| 吉隆县| 安新县| 莱西市| 宜昌市| 广丰县| 林芝县| 新巴尔虎右旗| 玉龙| 安乡县| 若羌县| 安岳县| 阿合奇县| 山阴县| 安塞县| 五河县| 晋中市| 中西区| 沧源| 深水埗区| 游戏| 东乡县| 原阳县| 澳门| 宜阳县| 石狮市| 黑水县| 佛坪县| 安阳市| 佛教| 遂平县| 曲麻莱县| 香港 | 吉林省|