找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Einführung in die Symplektische Geometrie; Rolf Berndt Textbook 1998 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden

[復(fù)制鏈接]
樓主: 次要
11#
發(fā)表于 2025-3-23 10:57:33 | 只看該作者
Extragalactic Astronomy and Cosmologytrie. Sie sind zu finden etwa in [AM] p. 31 if. oder [A] p. 77 f. und p. 163 ff. Meine Darstellung ist auch beeinflul?t durch die Bücher von .: . [C], .: . [HL], .: . [St], und .: . [Ch] sowie den Aufsatz von .: . [K.].
12#
發(fā)表于 2025-3-23 14:10:07 | 只看該作者
Hamiltonsche Vektorfelder und Poissonklammern,lismus der symplektischen Geometrie elegant formulieren (und dann auch bearbeiten) lassen. Diese Formulierung soll hier ausgeführt werden. Quellen dafür sind u.a. [Ki] p. 231–3, [GS] p. 88 ff sowie [AM] p. 187–208.
13#
發(fā)表于 2025-3-23 18:10:30 | 只看該作者
14#
發(fā)表于 2025-3-23 22:22:30 | 只看該作者
M. H. M. Caralp,A. A. Clifford,S. E. Colebyng von der klassischen zur Quantenmechanik. Zur Motivation für die symplektische Geometrie soll dies hier zu Beginn in groben Umrissen vorgestellt werden. Als Leitfaden kann dabei Ch. 1 aus . [V] genommen werden. Ausführlichere Darstellungen der Prinzipien der klassischen Mechanik finden sich bei .
15#
發(fā)表于 2025-3-24 02:47:10 | 只看該作者
Business, Human Rights and Corruption Riskslismus der symplektischen Geometrie elegant formulieren (und dann auch bearbeiten) lassen. Diese Formulierung soll hier ausgeführt werden. Quellen dafür sind u.a. [Ki] p. 231–3, [GS] p. 88 ff sowie [AM] p. 187–208.
16#
發(fā)表于 2025-3-24 09:59:16 | 只看該作者
17#
發(fā)表于 2025-3-24 13:49:49 | 只看該作者
Clusters and groups of galaxies,ktischen Mannigfaltigkeit (insbesondere dem Phasenraum) der klassischen Mechanik in einen Hilbertraum der Quantenmechanik zu transferieren. Einer kritischen Betrachtung dieses Problems unter Einbeziehung historischer Bemerkungen ist das Buch [Wa] von . gewidmet. Daneben ist das Buch [Wo] von . zu ne
18#
發(fā)表于 2025-3-24 15:40:15 | 只看該作者
19#
發(fā)表于 2025-3-24 22:54:29 | 只看該作者
20#
發(fā)表于 2025-3-25 00:11:08 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 07:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
屏南县| 武宁县| 东乡族自治县| 泸西县| 哈密市| 乐平市| 龙南县| 大冶市| 高台县| 延庆县| 应城市| 武隆县| 康乐县| 乌鲁木齐市| 九江市| 同德县| 合水县| 临洮县| 虞城县| 泸定县| 定襄县| 武城县| 广西| 祥云县| 土默特左旗| 丹阳市| 杂多县| 乌恰县| 南陵县| 海林市| 琼结县| 汉寿县| 安化县| 保山市| 米易县| 岳普湖县| 苍南县| 郧西县| 永清县| 新田县| 独山县|