找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Einführung in die Kryptographie; Johannes Buchmann Textbook 20084th edition Springer-Verlag Berlin Heidelberg 2008 Algorithmen.DES.Digital

[復(fù)制鏈接]
樓主: 粘上
11#
發(fā)表于 2025-3-23 13:03:59 | 只看該作者
Anxiety in Children-FRIENDS ProgramIn diesem Kapitel führen wir das Rechnen in Restklassenringen und in primen Restklassengruppen ein. Diese Techniken sind von zentraler Bedeutung in kryptographischen Verfahren. Einige der behandelten Sachverhalte gelten allgemeiner in Gruppen. Daher behandeln wir in diesem Kapitel auch endliche Gruppen und ihre Eigenschaften.
12#
發(fā)表于 2025-3-23 17:47:04 | 只看該作者
13#
發(fā)表于 2025-3-23 20:32:53 | 只看該作者
Encyclopedia of Computational NeuroscienceIn diesem Kapitel geht es um das Problem, diskrete Logarithmen zu berechnen (DL-Problem). Nur in Gruppen, in denen das DL-Problem schwierig zu l?sen ist, k?nnen das ElGamal-Verschlüsselungsverfahren (siehe Abschnitt 9.6) und viele andere Public-Key-Verfahren sicher sein. Daher ist das DL-Problem von gro?er Bedeutung in der Kryptographie.
14#
發(fā)表于 2025-3-24 01:18:17 | 只看該作者
Encyclopedia of Computational NeuroscienceIn diesem Kapitel behandeln wir kryptographische Hashfunktionen. Solche Funktionen braucht man z.B. für digitale Signaturen. Im ganzen Kapitel ist . ein Alphabet.
15#
發(fā)表于 2025-3-24 04:38:19 | 只看該作者
16#
發(fā)表于 2025-3-24 09:00:43 | 只看該作者
17#
發(fā)表于 2025-3-24 11:28:02 | 只看該作者
18#
發(fā)表于 2025-3-24 17:32:20 | 只看該作者
Kongruenzen und Restklassenringe,In diesem Kapitel führen wir das Rechnen in Restklassenringen und in primen Restklassengruppen ein. Diese Techniken sind von zentraler Bedeutung in kryptographischen Verfahren. Einige der behandelten Sachverhalte gelten allgemeiner in Gruppen. Daher behandeln wir in diesem Kapitel auch endliche Gruppen und ihre Eigenschaften.
19#
發(fā)表于 2025-3-24 20:05:49 | 只看該作者
20#
發(fā)表于 2025-3-25 02:33:03 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-18 11:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宁阳县| 石泉县| 陆川县| 肃北| 西畴县| 烟台市| 溧水县| 南漳县| 凤庆县| 格尔木市| 微博| 特克斯县| 天长市| 孟州市| 陵川县| 屏东市| 西充县| 南华县| 文登市| 专栏| 上林县| 霞浦县| 木兰县| 遂昌县| 华亭县| 烟台市| 桓仁| 莆田市| 察哈| 东海县| 新晃| 扎兰屯市| 定安县| 太白县| 当涂县| 黎川县| 赤水市| 和硕县| 左权县| 南涧| 高阳县|