找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Einführung in die Geometrie und Topologie; Werner Ballmann Textbook 20151st edition Springer Basel 2015 Fl?che.Kohomologie.Krümmung.Kurve.

[復(fù)制鏈接]
樓主: McKinley
11#
發(fā)表于 2025-3-23 10:40:17 | 只看該作者
Differentialformen und Kohomologie, den Brouwer’schen Fixpunktsatz beweisen. Wir führen Orientierungen ein und diskutieren den Jordan-Brouwer’schen Zerlegungssatz. Schlie?lich definieren wir orientierte Integrale und beweisen die Integralformel von Stokes. Die in diesem Kapitel ben?tigten Hilfsmittel aus der linearen Algebra haben wir in den Anh?ngen A und B zusammengestellt.
12#
發(fā)表于 2025-3-23 17:26:23 | 只看該作者
13#
發(fā)表于 2025-3-23 20:27:11 | 只看該作者
14#
發(fā)表于 2025-3-23 23:41:21 | 只看該作者
Kr?fte und Energie im elektrischen Feldlysis sind Mannigfaltigkeiten lokal nicht von euklidischen R?umen zu unterscheiden und daher auf die Werkzeuge der Analysis zugeschnitten. Vieles aus der Analysis euklidischer R?ume findet mit den Mannigfaltigkeiten seinen natürlichen Rahmen.
15#
發(fā)表于 2025-3-24 03:33:41 | 只看該作者
https://doi.org/10.1007/978-3-662-00601-6braischen Topologie, n?mlich der de Rhamschen Kohomologie. Differentialformen sind glatte Familien reellwertiger alternierender multilinearer Abbildungen auf den Tangentialr?umen der zugrunde liegenden Mannigfaltigkeit. Das ?u?ere Differential führt zur de Rham’schen Kohomologie, mit deren Hilfe wir
16#
發(fā)表于 2025-3-24 10:29:40 | 只看該作者
17#
發(fā)表于 2025-3-24 11:34:11 | 只看該作者
18#
發(fā)表于 2025-3-24 17:22:04 | 只看該作者
Mannigfaltigkeiten,lysis sind Mannigfaltigkeiten lokal nicht von euklidischen R?umen zu unterscheiden und daher auf die Werkzeuge der Analysis zugeschnitten. Vieles aus der Analysis euklidischer R?ume findet mit den Mannigfaltigkeiten seinen natürlichen Rahmen.
19#
發(fā)表于 2025-3-24 20:29:12 | 只看該作者
20#
發(fā)表于 2025-3-25 02:10:31 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-28 02:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
包头市| 彭阳县| 宣化县| 平定县| 宜昌市| 榆树市| 宁晋县| 滦南县| 阿克苏市| 三原县| 磴口县| 合水县| 新龙县| 四川省| 阜宁县| 左权县| 楚雄市| 井冈山市| 舟曲县| 沾化县| 延川县| 东丰县| 三穗县| 阿拉善左旗| 同德县| 南汇区| 宁阳县| 安塞县| 天峻县| 裕民县| 甘谷县| 天峻县| 志丹县| 西畴县| 奎屯市| 公安县| 金门县| 阿城市| 七台河市| 甘南县| 平凉市|