找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Einführung in die Geometrie und Topologie; Werner Ballmann Textbook 20151st edition Springer Basel 2015 Fl?che.Kohomologie.Krümmung.Kurve.

[復(fù)制鏈接]
樓主: McKinley
11#
發(fā)表于 2025-3-23 10:40:17 | 只看該作者
Differentialformen und Kohomologie, den Brouwer’schen Fixpunktsatz beweisen. Wir führen Orientierungen ein und diskutieren den Jordan-Brouwer’schen Zerlegungssatz. Schlie?lich definieren wir orientierte Integrale und beweisen die Integralformel von Stokes. Die in diesem Kapitel ben?tigten Hilfsmittel aus der linearen Algebra haben wir in den Anh?ngen A und B zusammengestellt.
12#
發(fā)表于 2025-3-23 17:26:23 | 只看該作者
13#
發(fā)表于 2025-3-23 20:27:11 | 只看該作者
14#
發(fā)表于 2025-3-23 23:41:21 | 只看該作者
Kr?fte und Energie im elektrischen Feldlysis sind Mannigfaltigkeiten lokal nicht von euklidischen R?umen zu unterscheiden und daher auf die Werkzeuge der Analysis zugeschnitten. Vieles aus der Analysis euklidischer R?ume findet mit den Mannigfaltigkeiten seinen natürlichen Rahmen.
15#
發(fā)表于 2025-3-24 03:33:41 | 只看該作者
https://doi.org/10.1007/978-3-662-00601-6braischen Topologie, n?mlich der de Rhamschen Kohomologie. Differentialformen sind glatte Familien reellwertiger alternierender multilinearer Abbildungen auf den Tangentialr?umen der zugrunde liegenden Mannigfaltigkeit. Das ?u?ere Differential führt zur de Rham’schen Kohomologie, mit deren Hilfe wir
16#
發(fā)表于 2025-3-24 10:29:40 | 只看該作者
17#
發(fā)表于 2025-3-24 11:34:11 | 只看該作者
18#
發(fā)表于 2025-3-24 17:22:04 | 只看該作者
Mannigfaltigkeiten,lysis sind Mannigfaltigkeiten lokal nicht von euklidischen R?umen zu unterscheiden und daher auf die Werkzeuge der Analysis zugeschnitten. Vieles aus der Analysis euklidischer R?ume findet mit den Mannigfaltigkeiten seinen natürlichen Rahmen.
19#
發(fā)表于 2025-3-24 20:29:12 | 只看該作者
20#
發(fā)表于 2025-3-25 02:10:31 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 21:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阿坝| 彭阳县| 武城县| 兰溪市| 上高县| 上林县| 新宾| 鞍山市| 察雅县| 新密市| 乃东县| 舞钢市| 苏尼特左旗| 宝坻区| 囊谦县| 泌阳县| 江口县| 长岛县| 福海县| 永泰县| 临桂县| 蓬安县| 霸州市| 星子县| 张家口市| 晋宁县| 迁西县| 大理市| 临猗县| 甘泉县| 乡宁县| 翁源县| 丽水市| 红桥区| 汉源县| 茶陵县| 衡东县| 互助| 潮安县| 雷山县| 大方县|