找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Einführung in die Finanzmathematik; Klassische Verfahren Jürgen Tietze Textbook 2015Latest edition Springer Fachmedien Wiesbaden 2015 Futur

[復(fù)制鏈接]
查看: 51881|回復(fù): 45
樓主
發(fā)表于 2025-3-21 17:50:04 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Einführung in die Finanzmathematik
副標(biāo)題Klassische Verfahren
編輯Jürgen Tietze
視頻videohttp://file.papertrans.cn/305/304178/304178.mp4
概述Erg?nzung zum Bestseller "Einführung in die angewandte Wirtschaftsmathematik".Klassische und moderne Finazmathematik.Bei der Neuauflage wurde ein L?sungsanhang erg?nzt, zus?tzlich gibt es ein passende
圖書封面Titlebook: Einführung in die Finanzmathematik; Klassische Verfahren Jürgen Tietze Textbook 2015Latest edition Springer Fachmedien Wiesbaden 2015 Futur
描述.Dieses Buch behandelt zun?chst die klassischen Verfahren der Finanzmathematik (einschlie?lich Investitionen). Elemente der Risikoanalyse und der derivativen Finanzinstrumente erweitern den klassischen Teil um moderne finanzmathematische Aspekte. Die - insbesondere für das Selbststudium konzipierte - Darstellung wird durch Hunderte von Beispielen und übungsaufgaben unterstützt, die ein solides Verst?ndnis und die sichere Beherrschung des finanzmathematischen Instrumentariums und seiner vielf?ltigen praktischen Anwendungen erm?glichen. Die aktuelle Auflage wurde aktualisiert und durch einen L?sungsanhang wesentlich erweitert..
出版日期Textbook 2015Latest edition
關(guān)鍵詞Futures; Inflation; Kontoführungsmodelle; Kursrechnung; Mathematik für Wirtschaftswissenschaftler; Option
版次12
doihttps://doi.org/10.1007/978-3-658-07157-8
isbn_softcover978-3-658-07156-1
isbn_ebook978-3-658-07157-8
copyrightSpringer Fachmedien Wiesbaden 2015
The information of publication is updating

書目名稱Einführung in die Finanzmathematik影響因子(影響力)




書目名稱Einführung in die Finanzmathematik影響因子(影響力)學(xué)科排名




書目名稱Einführung in die Finanzmathematik網(wǎng)絡(luò)公開(kāi)度




書目名稱Einführung in die Finanzmathematik網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書目名稱Einführung in die Finanzmathematik被引頻次




書目名稱Einführung in die Finanzmathematik被引頻次學(xué)科排名




書目名稱Einführung in die Finanzmathematik年度引用




書目名稱Einführung in die Finanzmathematik年度引用學(xué)科排名




書目名稱Einführung in die Finanzmathematik讀者反饋




書目名稱Einführung in die Finanzmathematik讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:41:33 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:12:32 | 只看該作者
地板
發(fā)表于 2025-3-22 05:44:39 | 只看該作者
Textbook 2015Latest edition- Darstellung wird durch Hunderte von Beispielen und übungsaufgaben unterstützt, die ein solides Verst?ndnis und die sichere Beherrschung des finanzmathematischen Instrumentariums und seiner vielf?ltigen praktischen Anwendungen erm?glichen. Die aktuelle Auflage wurde aktualisiert und durch einen L?sungsanhang wesentlich erweitert..
5#
發(fā)表于 2025-3-22 11:22:56 | 只看該作者
Jürgen TietzeErg?nzung zum Bestseller "Einführung in die angewandte Wirtschaftsmathematik".Klassische und moderne Finazmathematik.Bei der Neuauflage wurde ein L?sungsanhang erg?nzt, zus?tzlich gibt es ein passende
6#
發(fā)表于 2025-3-22 15:26:23 | 只看該作者
7#
發(fā)表于 2025-3-22 17:17:05 | 只看該作者
8#
發(fā)表于 2025-3-22 21:21:25 | 只看該作者
Acid-Base Balance and Blood Gases,Kennzeichen der .. Verzinsung ist es, dass . der betrachteten Verzinsungsspanne . vorgenommen werden. Vereinbart man lineare Verzinsung, SO werden erst am Ende des Betrachlungszeitrawns (vgl. Konvention 1.2.33) das Kapital und die entstandenen Zinsen zusammengefasst bzw. verrechnet.
9#
發(fā)表于 2025-3-23 04:40:50 | 只看該作者
10#
發(fā)表于 2025-3-23 05:39:35 | 只看該作者
Stuart O. Nelson,Samir TrabelsiDie Tilgungsrechnung besch?ftigt sich mit allen Vorg?ngen und Problemen, die bei der . und .. einer Schuld ., auftreten.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-29 00:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
晋州市| 那曲县| 确山县| 马关县| 四子王旗| 奉节县| 万安县| 西峡县| 武威市| 广州市| 电白县| 万宁市| 九龙县| 巴彦淖尔市| 鸡西市| 安达市| 林州市| 东山县| 东宁县| 南投市| 盐源县| 金山区| 霍林郭勒市| 叙永县| 佛冈县| 康平县| 淮滨县| 密云县| 花垣县| 伊宁市| 夏邑县| 玛多县| 奉贤区| 邻水| 晋江市| 扶绥县| 咸阳市| 尚志市| 英德市| 保山市| 高邑县|