找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Einführung in Algebra und Zahlentheorie; Rainer Schulze-Pillot Textbook 20082nd edition Springer-Verlag Berlin Heidelberg 2008 Algebra.End

[復(fù)制鏈接]
樓主: Precise
11#
發(fā)表于 2025-3-23 10:29:06 | 只看該作者
Masoud Motasaddi Zarandy,John RutkaIn der bisher behandelten K?rpertheorie spielen irreduzible Polynome zwar eine zentrale Rolle, wir haben bisher aber kaum überlegt, wie man ein gegebenes Polynom als irreduzibel nachweisen bzw. in seine irreduziblen Faktoren zerlegen kann.
12#
發(fā)表于 2025-3-23 15:44:27 | 只看該作者
Nora Cazzagon,Olivier ChazouillèresFür endliche Erweiterungen . endlicher K?rper haben wir in Satz 10.8 gesehen, dass die Zwischenk?rper . . . . . der Erweiterung bijektiv den Untergruppen der Automorphismengruppe Aut(.) zugeordnet werden k?nnen.
13#
發(fā)表于 2025-3-23 21:26:40 | 只看該作者
14#
發(fā)表于 2025-3-24 01:33:38 | 只看該作者
15#
發(fā)表于 2025-3-24 03:06:25 | 只看該作者
16#
發(fā)表于 2025-3-24 07:51:01 | 只看該作者
Abelsche Gruppen und Charaktere,W?hrend die Klassifikation (also die explizite Auflistung aller Isomorphietypen) beliebiger Gruppen selbst im Fall endlicher Gruppen eine praktisch unl?sbare Aufgabe ist, k?nnen wir die M?glichkeiten für den Isomorphietyp einer abelschen Gruppe recht einfach bestimmen, wenn wir uns auf endlich erzeugte abelsche Gruppen beschr?nken.
17#
發(fā)表于 2025-3-24 12:11:45 | 只看該作者
18#
發(fā)表于 2025-3-24 18:02:09 | 只看該作者
19#
發(fā)表于 2025-3-24 20:19:27 | 只看該作者
,Endliche K?rper,Endliche K?rper treten sowohl in der Zahlentheorie und der algebraischen Geometrie als auch in den Anwendungen der Algebra für Fragen der diskreten Mathematik h?ufig auf.
20#
發(fā)表于 2025-3-25 00:03:28 | 只看該作者
Faktorisierung von Polynomen,In der bisher behandelten K?rpertheorie spielen irreduzible Polynome zwar eine zentrale Rolle, wir haben bisher aber kaum überlegt, wie man ein gegebenes Polynom als irreduzibel nachweisen bzw. in seine irreduziblen Faktoren zerlegen kann.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 11:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
博野县| 秭归县| 宁海县| 涿州市| 翁源县| 光泽县| 神农架林区| 莎车县| 桂东县| 湖北省| 温州市| 鄂伦春自治旗| 虞城县| 资兴市| 余姚市| 汪清县| 平泉县| 从江县| 建平县| 庆城县| 仁化县| 碌曲县| 中山市| 壶关县| 布拖县| 平遥县| 南乐县| 海兴县| 巴彦县| 岳西县| 商南县| 正镶白旗| 云阳县| 出国| 建湖县| 宁陵县| 广东省| 阳新县| 上栗县| 金昌市| 新邵县|