找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Eine Entdeckungsreise in die Welt des Unendlichen; Die Grundlagen der M Lorenz Halbeisen,Regula Krapf Textbook 2023 Der/die Herausgeber bzw

[復制鏈接]
樓主: FETID
51#
發(fā)表于 2025-3-30 10:19:03 | 只看該作者
,Kardinalit?ten und Wohlordnungen,emeinert die Mengen der natürlichen Zahlen auf zwei Weisen ins Unendliche: Einerseits durch Kardinalit?ten, welche Aufschluss über die M?chtigkeit einer Menge geben und andererseits durch Wohlordnungstypen, mit welchen man im Unendlichen weiterz?hlen kann. Beide Begriffe werden in diesem Kapitel so
52#
發(fā)表于 2025-3-30 16:21:32 | 只看該作者
53#
發(fā)表于 2025-3-30 20:21:59 | 只看該作者
Ordinalzahlen,t gesetzt. Die Ordinalzahlen erm?glichen ein Z?hlen im Unendlichen und mit der Ordinalzahlarithmetik kann man Rechenoperationen einführen, die diejenigen auf den natürlichen Zahlen erweitern, aber nicht denselben Rechengesetzen folgen. Au?erdem werden mit dem Wohlordnungssatz und dem Teichmüllerprin
54#
發(fā)表于 2025-3-30 21:53:16 | 只看該作者
Kardinalzahlen,lzahlen l?sst sich die M?chtigkeit von wohlgeordneten Mengen vergleichen. Auch mit Kardinalzahlen kann man rechnen; es handelt sich aber nicht um dieselbe Arithmetik wie für Ordinalzahlen. Besonders faszinierend ist die Frage nach der M?chtigkeit der Menge der reellen Zahlen: Die sogenannte Kontinuu
55#
發(fā)表于 2025-3-31 01:21:11 | 只看該作者
56#
發(fā)表于 2025-3-31 06:50:03 | 只看該作者
Permutationsmodelle, immer noch gelten. In diesem Kapitel wird gezeigt, wie man Permutationsmodelle mithilfe von Symmetriegruppen konstruiert. Mit dem Zweiten Fraenkelschen Modell wird ein Beispiel für ein Permutationsmodell betrachtet, in welchem eine abz?hlbare Vereinigung von 2-elementigen Mengen überabz?hlbar ist.
57#
發(fā)表于 2025-3-31 10:45:02 | 只看該作者
58#
發(fā)表于 2025-3-31 15:39:48 | 只看該作者
59#
發(fā)表于 2025-3-31 19:27:24 | 只看該作者
Determiniertheit unendlicher Spiele,rantiert. Das Determiniertheitsaxiom und das Auswahlaxiom schlie?en sich allerdings gegenseitig aus. Anschlie?end werden verschiedene Regularit?tsprinzipien wie die Frage, ob jede Menge reeller Zahlen messbar ist, sowohl unter Annahme des Auswahlaxioms als auch des Axioms der Determiniertheitsaxioms
60#
發(fā)表于 2025-3-31 23:58:34 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 17:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
秭归县| 彭泽县| 乌鲁木齐市| 江门市| 黄梅县| 汉源县| 临清市| 清涧县| 张家港市| 洪洞县| 无棣县| 宜丰县| 平原县| 泾阳县| 齐河县| 深州市| 赤壁市| 青神县| 商都县| 海口市| 金秀| 色达县| 乌拉特前旗| 侯马市| 梁河县| 伊春市| 巴中市| 玛沁县| 樟树市| 湟源县| 西乌珠穆沁旗| 西林县| 建昌县| 封开县| 台南市| 玉山县| 德钦县| 八宿县| 宁明县| 永丰县| 沙田区|