找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Eine Einladung in die Mathematik; Einblicke in aktuell Dierk Schleicher,Malte Lackmann Book 2013 Springer-Verlag Berlin Heidelberg 2013 Ein

[復(fù)制鏈接]
樓主: 揭發(fā)
41#
發(fā)表于 2025-3-28 16:03:11 | 只看該作者
42#
發(fā)表于 2025-3-28 21:13:28 | 只看該作者
,Wie man Diophantische Gleichungen l?st, Diophantische Gleichungen ein und zeigen, dass es schwer sein kann sie zu l?sen. Dann zeigen wir, wie man eine spezielle Gleichung, die mit im Pascalschen Dreieck mehrfach auftauchenden Zahlen zu tun hat, mit modernsten Techniken l?sen kann.
43#
發(fā)表于 2025-3-29 01:58:14 | 只看該作者
Vom Kindergarten zu quadratischen Formen,tischen Formen. Desweiteren geben wir eine M?glichkeit an, die Anzahl der grunds?tzlich verschiedenen quadratischen Formen mit einer bestimmten Diskriminante, die Klassenzahl, zu berechnen. Diese spielte beispielsweise bei den ersten Versuchen, den gro?en Satz von Fermat zu beweisen, eine wichtige Rolle.
44#
發(fā)表于 2025-3-29 04:25:38 | 只看該作者
45#
發(fā)表于 2025-3-29 09:40:19 | 只看該作者
45 Jahre Graphentheorie,ran liegt das? Welche Rolle spielt Graphentheorie in der heutigen Mathematik? Zur Beantwortung dieser Fragen will ich ein paar der vielen Verbindungen zwischen Graphentheorie und anderen Bereichen der Mathematik vorstellen, die ich selber gefunden habe.
46#
發(fā)表于 2025-3-29 11:30:48 | 只看該作者
,Regul?r oder nicht regul?r? Str?mungssingularit?ten auf der Spur,ngel?ste mathematische Frage, bekannt insbesondere durch das ?Navier–Stokes Milleniumsproblem“, ob zun?chst regul?re L?sungen Singularit?ten entwickeln k?nnen. Dabei stellen wir insbesondere die Rolle von Computersimulationen als Motor für die Entwicklung neuer Mathematik dar.
47#
發(fā)表于 2025-3-29 18:35:15 | 只看該作者
,über die Hardy-Ungleichung,gen ist sie eine der meistgenutzten Ungleichungen der Analysis. In diesem Artikel stellen wir einige Aspekte ihrer Geschichte sowie einige Verallgemeinerungen und Anwendungen vor. Dies ist ein sehr aktives Forschungsgebiet.
48#
發(fā)表于 2025-3-29 22:44:50 | 只看該作者
49#
發(fā)表于 2025-3-30 03:20:15 | 只看該作者
ollen. Zusammen mit einem Team junger "Testleser" haben die Herausgeber und Autoren? in einem intensiven Bearbeitungsprozess die Texte für junge Leser verst?ndlich gestaltet. .Schüler, Lehrer, Mathematiker und alle Mathematik-Begeisterten werden in diesem vielseitigen und spannenden Buch genussvoll lesen..978-3-642-25797-1978-3-642-25798-8
50#
發(fā)表于 2025-3-30 05:13:56 | 只看該作者
,Struktur und Zuf?lligkeit der Primzahlen,aos in den Primzahlen. Obwohl wir offensichtliche Muster in der Menge der Primzahlen finden k?nnen (so sind etwa fast alle ungerade) und ihre asymptotische Verteilung sehr regul?r ist (Primzahlsatz), kennen wir immer noch keine deterministische Formel, die schnell gro?e Primzahlen erzeugt, und k?nne
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 05:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
武陟县| 壤塘县| 喜德县| 朝阳县| 阿坝| 吴川市| 三门县| 电白县| 青海省| 贵溪市| 中江县| 永川市| 通海县| 榆林市| 荔波县| 翁牛特旗| 齐齐哈尔市| 金平| 郑州市| 稷山县| 宁陕县| 沈丘县| 龙井市| 新沂市| 城步| 古浪县| 岳阳县| 容城县| 湘潭市| 合阳县| 重庆市| 吉林市| 德保县| 屏东县| 漯河市| 湘阴县| 英山县| 璧山县| 宜章县| 佛山市| 衡阳县|