找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Eigenvalue Problems: Algorithms, Software and Applications in Petascale Computing; EPASA 2015, Tsukuba, Tetsuya Sakurai,Shao-Liang Zhang,Ta

[復(fù)制鏈接]
樓主: NK871
31#
發(fā)表于 2025-3-26 23:13:54 | 只看該作者
32#
發(fā)表于 2025-3-27 02:56:29 | 只看該作者
https://doi.org/10.1007/978-3-658-16786-8e error of the matrix multiplications appearing in the algorithm. In this paper, we improve the accuracy of the approximate solutions of the Shifted systems generated by the Shifted Block BiCGGR method.
33#
發(fā)表于 2025-3-27 08:08:34 | 只看該作者
Von der Arithmetik zur Algebra,when eigenvectors are unnecessary. Our technique is also beneficial in cases where eigenvectors are necessary, because the residual norms of the target eigenpairs can be cheaply computed and monitored during each iteration step of the inner linear solver.
34#
發(fā)表于 2025-3-27 11:00:41 | 只看該作者
,“Never Was There More to Do.”,ategorize the recent advances in this field from the perspective of compute-memory tradeoff, which has not been considered in much detail in this area. Benchmark tests reveal that there is a large difference in the memory consumption and performance between the different methods.
35#
發(fā)表于 2025-3-27 16:56:58 | 只看該作者
Numerical Integral Eigensolver for a Ring Region on the Complex Plane,avoid a decrease in the computational accuracy of the eigenpairs resulting from locating the quadrature points near the eigenvalues. We implement the proposed method in the SLEPc library, and examine its performance on a supercomputer cluster with many-core architecture.
36#
發(fā)表于 2025-3-27 18:01:54 | 只看該作者
37#
發(fā)表于 2025-3-27 23:33:16 | 只看該作者
Accuracy Improvement of the Shifted Block BiCGGR Method for Linear Systems with Multiple Shifts ande error of the matrix multiplications appearing in the algorithm. In this paper, we improve the accuracy of the approximate solutions of the Shifted systems generated by the Shifted Block BiCGGR method.
38#
發(fā)表于 2025-3-28 05:52:13 | 只看該作者
39#
發(fā)表于 2025-3-28 09:44:36 | 只看該作者
40#
發(fā)表于 2025-3-28 12:05:40 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 04:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
海晏县| 正镶白旗| 民和| 阿拉善右旗| 濮阳县| 柯坪县| 新乡县| 遂溪县| 红桥区| 烟台市| 抚宁县| 乡宁县| 安庆市| 高安市| 当涂县| 环江| 临汾市| 长兴县| 晋城| 霍林郭勒市| 博乐市| 新邵县| 云霄县| 高碑店市| 裕民县| 都昌县| 鄂托克前旗| 大姚县| 鄄城县| 定州市| 玛纳斯县| 长顺县| 卫辉市| 秦安县| 岳阳市| 渝中区| 卢湾区| 东兰县| 山阴县| 黔西| 奉贤区|