找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Eigenvalue Distribution of Compact Operators; Hermann K?nig Book 1986 Springer Basel AG 1986 distribution.Eigenvalue.operator

[復(fù)制鏈接]
查看: 23904|回復(fù): 38
樓主
發(fā)表于 2025-3-21 19:51:35 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Eigenvalue Distribution of Compact Operators
編輯Hermann K?nig
視頻videohttp://file.papertrans.cn/304/303217/303217.mp4
叢書(shū)名稱(chēng)Operator Theory: Advances and Applications
圖書(shū)封面Titlebook: Eigenvalue Distribution of Compact Operators;  Hermann K?nig Book 1986 Springer Basel AG 1986 distribution.Eigenvalue.operator
出版日期Book 1986
關(guān)鍵詞distribution; Eigenvalue; operator
版次1
doihttps://doi.org/10.1007/978-3-0348-6278-3
isbn_softcover978-3-0348-6280-6
isbn_ebook978-3-0348-6278-3Series ISSN 0255-0156 Series E-ISSN 2296-4878
issn_series 0255-0156
copyrightSpringer Basel AG 1986
The information of publication is updating

書(shū)目名稱(chēng)Eigenvalue Distribution of Compact Operators影響因子(影響力)




書(shū)目名稱(chēng)Eigenvalue Distribution of Compact Operators影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Eigenvalue Distribution of Compact Operators網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Eigenvalue Distribution of Compact Operators網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Eigenvalue Distribution of Compact Operators被引頻次




書(shū)目名稱(chēng)Eigenvalue Distribution of Compact Operators被引頻次學(xué)科排名




書(shū)目名稱(chēng)Eigenvalue Distribution of Compact Operators年度引用




書(shū)目名稱(chēng)Eigenvalue Distribution of Compact Operators年度引用學(xué)科排名




書(shū)目名稱(chēng)Eigenvalue Distribution of Compact Operators讀者反饋




書(shū)目名稱(chēng)Eigenvalue Distribution of Compact Operators讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:46:07 | 只看該作者
Eigenvalues of Operators on Banach Spaces,ators have p-th power summable eigenvalues. It is thus natural to ask: What is the optimal order of summability of the eigenvalues of the above classes of operators on Banach spaces? This is the main topic of this chapter: we extend Weyl’s inequality to the above operator ideals on Banach spaces.
板凳
發(fā)表于 2025-3-22 02:41:05 | 只看該作者
A. S. Markov,V. A. Romanov,N. B. Shaykhonmmability conditions. Further results in this direction were achieved and presented by Gohberg-Krein [23]. Lately much more precise estimates were obtained by Birman-Solomjak who in their survey [7] also treat the case of weighted kernel operators on unbounded domains.
地板
發(fā)表于 2025-3-22 08:35:11 | 只看該作者
,Dizionario d’ingegneria naturalistica,an A denotes the closed linear hull of A in X. The topological dual of X is denoted X*(= L(X, K)) and the duality pairing written or x*(x) where x ∈ X, x* ∈ X*. The dual of an operator T is denoted by T*.
5#
發(fā)表于 2025-3-22 10:26:12 | 只看該作者
Dictionary of Statuses within EU Lawto prove general (upper) estimates for the eigenvalues of the operators belonging to such ideals. These abstract results are applied to integral operators to derive some non-classical results. The Banach space setting is essential: several applications, e.g. to Hille-Tamarkin kernels, have not been proved by the classical Hilbert space methods.
6#
發(fā)表于 2025-3-22 15:11:37 | 只看該作者
Introduction,mmability conditions. Further results in this direction were achieved and presented by Gohberg-Krein [23]. Lately much more precise estimates were obtained by Birman-Solomjak who in their survey [7] also treat the case of weighted kernel operators on unbounded domains.
7#
發(fā)表于 2025-3-22 20:18:14 | 只看該作者
Notations and Conventions,an A denotes the closed linear hull of A in X. The topological dual of X is denoted X*(= L(X, K)) and the duality pairing written or x*(x) where x ∈ X, x* ∈ X*. The dual of an operator T is denoted by T*.
8#
發(fā)表于 2025-3-22 22:12:30 | 只看該作者
Banach Spaces and Operators,to prove general (upper) estimates for the eigenvalues of the operators belonging to such ideals. These abstract results are applied to integral operators to derive some non-classical results. The Banach space setting is essential: several applications, e.g. to Hille-Tamarkin kernels, have not been proved by the classical Hilbert space methods.
9#
發(fā)表于 2025-3-23 04:36:36 | 只看該作者
https://doi.org/10.1007/978-3-662-32571-1We apply the results on the eigenvalues of abstract operators on Banach spaces to determine the asymptotic distribution of the eigenvalues of integral operators T in function spaces Z.
10#
發(fā)表于 2025-3-23 08:58:07 | 只看該作者
Abbreviated New Drug ApplicationIn this chapter we consider some applications of the results about eigenvalues of Riesz operators (of chapter 2) to problems in the theory of Banach spaces. The question of the existence of a “trace” of an infinite-dimensional Riesz operator T ∈ L(X) is one of them.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 12:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
交城县| 澄城县| 桐梓县| 兰考县| 佛山市| 北京市| 兴义市| 郑州市| 眉山市| 汾西县| 大连市| 屯留县| 雷山县| 陆川县| 重庆市| 汕头市| 鹤壁市| 慈利县| 开封县| 容城县| 景泰县| 林口县| 三明市| 榕江县| 南开区| 盐亭县| 涞源县| 鄂州市| 奉贤区| 郧西县| 鞍山市| 高阳县| 池州市| 德阳市| 广南县| 青川县| 旌德县| 安宁市| 榆林市| 侯马市| 固原市|