找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Efficient Solutions of Elliptic Systems; Proceedings of a GAM Wolfgang Hackbusch Conference proceedings 1984 Springer Fachmedien Wiesbaden

[復(fù)制鏈接]
樓主: 反抗日本
11#
發(fā)表于 2025-3-23 13:37:47 | 只看該作者
12#
發(fā)表于 2025-3-23 15:48:21 | 只看該作者
13#
發(fā)表于 2025-3-23 21:18:09 | 只看該作者
Numerical Solution of Mixed Finite Element Problems,onvergence improves when using a conjugate residual algorithm. The convergence rate is measured in a mesh dependent norm. Both algorithms have convergence rates bounded away from 1 independently of the mesh-size. We present numerical results for the first algorithm. Numerical experiments for the second algorithm are in progress.
14#
發(fā)表于 2025-3-24 01:33:37 | 只看該作者
15#
發(fā)表于 2025-3-24 04:05:47 | 只看該作者
Notes on Numerical Fluid Mechanics and Multidisciplinary Designhttp://image.papertrans.cn/e/image/303006.jpg
16#
發(fā)表于 2025-3-24 08:37:19 | 只看該作者
17#
發(fā)表于 2025-3-24 12:55:22 | 只看該作者
18#
發(fā)表于 2025-3-24 17:07:02 | 只看該作者
1648: Prahlen, drohen, schmierenhe computational work is essentially proportional to the number of grid points. This work is motivated by the usefulness of such a solver in the numerical study of a more complicated model equation describing nonlinear pattern formation near the onset of Rayleigh-Benard convection [1].
19#
發(fā)表于 2025-3-24 20:35:52 | 只看該作者
https://doi.org/10.1007/978-3-662-39554-7 appears as a computational variable in a FE-approximation of some first order system. Piecewise linear element fields are used and their approximation properties are studied in the 2- and 3-dimensional case. Numerical examples indicating the accuracy of the method are given.
20#
發(fā)表于 2025-3-24 23:33:06 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 07:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
康马县| 台北县| 宜川县| 松原市| 临猗县| 高尔夫| 西峡县| 竹北市| 宜君县| 朔州市| 鱼台县| 瓦房店市| 全州县| 宁夏| 右玉县| 柳河县| 东乡县| 南乐县| 泰和县| 勃利县| 罗源县| 张家界市| 随州市| 岱山县| 宜春市| 玛沁县| 合川市| 仙桃市| 朝阳区| 兖州市| 昌吉市| 乐至县| 濉溪县| 牟定县| 屏山县| 巴彦淖尔市| 辉县市| 察隅县| 杭锦后旗| 文登市| 临泽县|