找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Efficient Processing of Deep Neural Networks; Vivienne Sze,Yu-Hsin Chen,Joel S. Emer Book 2020 Springer Nature Switzerland AG 2020

[復(fù)制鏈接]
樓主: peak-flow-meter
31#
發(fā)表于 2025-3-26 22:41:20 | 只看該作者
Designing DNN Acceleratorsmultiplications, in order to achieve higher performance (i.e., higher throughput and/or lower latency) on off-the-shelf general-purpose processors such as CPUs and GPUs. In this chapter, we will focus on optimizing the processing of DNNs directly by designing specialized hardware.
32#
發(fā)表于 2025-3-27 04:28:35 | 只看該作者
33#
發(fā)表于 2025-3-27 07:23:14 | 只看該作者
34#
發(fā)表于 2025-3-27 10:06:26 | 只看該作者
Exploiting Sparsityeferring to the fact that there are many repeated values in the data. Much of the time the repeated value is zero, which is what we will assume unless explicitly noted. Thus, we will talk about the sparsity or density of the data as the percentage of zeros or non-zeros, respectively in the data. The
35#
發(fā)表于 2025-3-27 15:11:40 | 只看該作者
36#
發(fā)表于 2025-3-27 18:19:04 | 只看該作者
Advanced Technologiess well as the transfer of the data. The associated physical factors also limit the bandwidth available to deliver data between memory and compute, and thus limits the throughput of the overall system. This is commonly referred to by computer architects as the “memory wall.”
37#
發(fā)表于 2025-3-28 00:58:43 | 只看該作者
Conclusionations including computer vision, speech recognition, and robotics and are often delivering better than human accuracy. However, while DNNs can deliver this outstanding accuracy, it comes at the cost of high computational complexity. With the stagnation of improvements in general-purpose computation
38#
發(fā)表于 2025-3-28 03:04:07 | 只看該作者
39#
發(fā)表于 2025-3-28 06:53:04 | 只看該作者
40#
發(fā)表于 2025-3-28 13:11:24 | 只看該作者
https://doi.org/10.1007/978-3-662-39613-1stical learning on a large amount of data to obtain an effective representation of an input space. This is different from earlier approaches that use hand-crafted features or rules designed by experts.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-27 22:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
巫溪县| 定州市| 文成县| 潮安县| 长岭县| 北流市| 关岭| 琼中| 界首市| 武定县| 上饶县| 城口县| 卓尼县| 平度市| 灵山县| 方山县| 龙山县| 巫山县| 新安县| 和田县| 琼中| 洛川县| 吴旗县| 金山区| 民乐县| 兰坪| 桃园市| 左云县| 勃利县| 弋阳县| 诸城市| 湛江市| 乐东| 砚山县| 宜黄县| 渑池县| 油尖旺区| 昌平区| 商都县| 襄汾县| 鞍山市|