找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Efficient Processing of Deep Neural Networks; Vivienne Sze,Yu-Hsin Chen,Joel S. Emer Book 2020 Springer Nature Switzerland AG 2020

[復制鏈接]
樓主: peak-flow-meter
31#
發(fā)表于 2025-3-26 22:41:20 | 只看該作者
Designing DNN Acceleratorsmultiplications, in order to achieve higher performance (i.e., higher throughput and/or lower latency) on off-the-shelf general-purpose processors such as CPUs and GPUs. In this chapter, we will focus on optimizing the processing of DNNs directly by designing specialized hardware.
32#
發(fā)表于 2025-3-27 04:28:35 | 只看該作者
33#
發(fā)表于 2025-3-27 07:23:14 | 只看該作者
34#
發(fā)表于 2025-3-27 10:06:26 | 只看該作者
Exploiting Sparsityeferring to the fact that there are many repeated values in the data. Much of the time the repeated value is zero, which is what we will assume unless explicitly noted. Thus, we will talk about the sparsity or density of the data as the percentage of zeros or non-zeros, respectively in the data. The
35#
發(fā)表于 2025-3-27 15:11:40 | 只看該作者
36#
發(fā)表于 2025-3-27 18:19:04 | 只看該作者
Advanced Technologiess well as the transfer of the data. The associated physical factors also limit the bandwidth available to deliver data between memory and compute, and thus limits the throughput of the overall system. This is commonly referred to by computer architects as the “memory wall.”
37#
發(fā)表于 2025-3-28 00:58:43 | 只看該作者
Conclusionations including computer vision, speech recognition, and robotics and are often delivering better than human accuracy. However, while DNNs can deliver this outstanding accuracy, it comes at the cost of high computational complexity. With the stagnation of improvements in general-purpose computation
38#
發(fā)表于 2025-3-28 03:04:07 | 只看該作者
39#
發(fā)表于 2025-3-28 06:53:04 | 只看該作者
40#
發(fā)表于 2025-3-28 13:11:24 | 只看該作者
https://doi.org/10.1007/978-3-662-39613-1stical learning on a large amount of data to obtain an effective representation of an input space. This is different from earlier approaches that use hand-crafted features or rules designed by experts.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-28 01:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
沁水县| 玛纳斯县| 渝北区| 台湾省| 武穴市| 厦门市| 横山县| 武安市| 雅安市| 常熟市| 昌都县| 孟连| 德惠市| 日照市| 罗田县| 沂源县| 武汉市| 雷州市| 沙雅县| 景泰县| 霍林郭勒市| 墨竹工卡县| 鄂温| 特克斯县| 宣城市| 长治市| 格尔木市| 景洪市| 遂平县| 巴林右旗| 聂拉木县| 鄂托克前旗| 吉隆县| 兴化市| 成都市| 门头沟区| 邵阳县| 策勒县| 高密市| 东乡| 大同市|