找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Efficient Learning Machines; Theories, Concepts, Mariette Awad,Rahul Khanna Book‘‘‘‘‘‘‘‘ 2015 The Editor(s) (if applicable) and The Author

[復(fù)制鏈接]
查看: 49282|回復(fù): 45
樓主
發(fā)表于 2025-3-21 18:49:28 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Efficient Learning Machines
副標(biāo)題Theories, Concepts,
編輯Mariette Awad,Rahul Khanna
視頻videohttp://file.papertrans.cn/303/302984/302984.mp4
概述Efficient Learning Machines explores the major topics of machine learning, including knowledge discovery, classifications, genetic algorithms, neural networking, kernel methods, and biologically-inspi
圖書封面Titlebook: Efficient Learning Machines; Theories, Concepts,  Mariette Awad,Rahul Khanna Book‘‘‘‘‘‘‘‘ 2015 The Editor(s) (if applicable) and The Author
描述.Machine learning techniques provide cost-effective alternatives to traditional methods for extracting underlying relationships between information and data and for predicting future events by processing existing information to train models. .Efficient Learning Machines. explores the major topics of machine learning, including knowledge discovery, classifications, genetic algorithms, neural networking, kernel methods, and biologically-inspired techniques. .Mariette Awad and Rahul Khanna’s synthetic approach weaves together the theoretical exposition, design principles, and practical applications of efficient machine learning. Their experiential emphasis, expressed in their close analysis of sample algorithms throughout the book, aims to equip engineers, students of engineering, and system designers to design and create new and more efficient machine learning systems. Readers of .Efficient Learning Machines. will learn how to recognize and analyze the problems that machine learning technology can solve for them, how to implement and deploy standard solutions to sample problems, and how to design new systems and solutions..Advances in computing performance, storage, memory, unstructu
出版日期Book‘‘‘‘‘‘‘‘ 2015
版次1
doihttps://doi.org/10.1007/978-1-4302-5990-9
isbn_softcover978-1-4302-5989-3
isbn_ebook978-1-4302-5990-9
copyrightThe Editor(s) (if applicable) and The Author(s) 2015
The information of publication is updating

書目名稱Efficient Learning Machines影響因子(影響力)




書目名稱Efficient Learning Machines影響因子(影響力)學(xué)科排名




書目名稱Efficient Learning Machines網(wǎng)絡(luò)公開度




書目名稱Efficient Learning Machines網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Efficient Learning Machines被引頻次




書目名稱Efficient Learning Machines被引頻次學(xué)科排名




書目名稱Efficient Learning Machines年度引用




書目名稱Efficient Learning Machines年度引用學(xué)科排名




書目名稱Efficient Learning Machines讀者反饋




書目名稱Efficient Learning Machines讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:57:05 | 只看該作者
Machine Learning and Knowledge Discovery, in diverse fields related to engineering, biological science, social media, medicine, and business intelligence. The primary objective for most of the applications is to characterize patterns in a complex stream of data. These patterns are then coupled with knowledge discovery and decision making.
板凳
發(fā)表于 2025-3-22 03:29:20 | 只看該作者
Support Vector Machines for Classification, learning model. SVM offers a principled approach to problems because of its mathematical foundation in statistical learning theory. SVM constructs its solution in terms of a subset of the training input. SVM has been extensively used for classification, regression, novelty detection tasks, and feat
地板
發(fā)表于 2025-3-22 07:24:16 | 只看該作者
Support Vector Regression, presented in . can be generalized to become applicable to regression problems. As in classification, . (SVR) is characterized by the use of kernels, sparse solution, and VC control of the margin and the number of .. Although less popular than SVM, SVR has been proven to be an effective tool in real
5#
發(fā)表于 2025-3-22 10:18:22 | 只看該作者
6#
發(fā)表于 2025-3-22 13:33:51 | 只看該作者
7#
發(fā)表于 2025-3-22 17:57:08 | 只看該作者
Deep Neural Networks,ong the many evolutions of ANN, . (DNNs) (Hinton, Osindero, and Teh 2006) stand out as a promising extension of the shallow ANN structure. The best demonstration thus far of hierarchical learning based on DNN, along with other Bayesian inference and deduction reasoning techniques, has been the perfo
8#
發(fā)表于 2025-3-23 00:05:53 | 只看該作者
9#
發(fā)表于 2025-3-23 05:26:21 | 只看該作者
10#
發(fā)表于 2025-3-23 05:32:10 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 06:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
时尚| 东乌珠穆沁旗| 蒙自县| 紫阳县| 民和| 巫溪县| 白城市| 西丰县| 舞钢市| 兖州市| 上饶县| 简阳市| 武清区| 华容县| 循化| 许昌市| 板桥市| 大冶市| 子长县| 朝阳县| 永城市| 岐山县| 澳门| 长寿区| 顺义区| 甘南县| 古丈县| 额敏县| 农安县| 友谊县| 朔州市| 临江市| 凤阳县| 色达县| 台江县| 正阳县| 金溪县| 黄梅县| 长岭县| 吐鲁番市| 霍邱县|