找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Efficient Execution of Irregular Dataflow Graphs; Hardware/Software Co Nimish Shah,Wannes Meert,Marian Verhelst Book 2023 The Editor(s) (if

[復(fù)制鏈接]
查看: 45811|回復(fù): 36
樓主
發(fā)表于 2025-3-21 19:43:09 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Efficient Execution of Irregular Dataflow Graphs
副標(biāo)題Hardware/Software Co
編輯Nimish Shah,Wannes Meert,Marian Verhelst
視頻videohttp://file.papertrans.cn/303/302977/302977.mp4
概述Analyzes the key bottlenecks in the existing platforms for these sparse and irregular AI and linear algebra algorithms;.Discusses an emerging set of AI workloads that rely on sparse matrix operations
圖書封面Titlebook: Efficient Execution of Irregular Dataflow Graphs; Hardware/Software Co Nimish Shah,Wannes Meert,Marian Verhelst Book 2023 The Editor(s) (if
描述.This book focuses on the acceleration of emerging irregular sparse workloads, posed by novel artificial intelligent (AI) models and sparse linear algebra. Specifically, the book outlines several co-optimized hardware-software solutions for a highly promising class of emerging sparse AI models called Probabilistic Circuit (PC) and a similar sparse matrix workload for triangular linear systems (SpTRSV). The authors describe optimizations for the entire stack, targeting applications, compilation, hardware architecture and silicon implementation, resulting in orders of magnitude higher performance and energy-efficiency compared to the existing state-of-the-art solutions. Thus, this book provides important building blocks for the upcoming generation of edge AI platforms..
出版日期Book 2023
關(guān)鍵詞hardware for sparse matrix operations; parallel computer architecture; hardware for probabilistic infe
版次1
doihttps://doi.org/10.1007/978-3-031-33136-7
isbn_softcover978-3-031-33138-1
isbn_ebook978-3-031-33136-7
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Efficient Execution of Irregular Dataflow Graphs影響因子(影響力)




書目名稱Efficient Execution of Irregular Dataflow Graphs影響因子(影響力)學(xué)科排名




書目名稱Efficient Execution of Irregular Dataflow Graphs網(wǎng)絡(luò)公開度




書目名稱Efficient Execution of Irregular Dataflow Graphs網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Efficient Execution of Irregular Dataflow Graphs被引頻次




書目名稱Efficient Execution of Irregular Dataflow Graphs被引頻次學(xué)科排名




書目名稱Efficient Execution of Irregular Dataflow Graphs年度引用




書目名稱Efficient Execution of Irregular Dataflow Graphs年度引用學(xué)科排名




書目名稱Efficient Execution of Irregular Dataflow Graphs讀者反饋




書目名稱Efficient Execution of Irregular Dataflow Graphs讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:19:10 | 只看該作者
Suitable Data Representation: A Study of Fixed-Point, Floating-Point, and PositTM Formats for Probanvestigates whether probabilistic AI models and sparse linear algebra workloads lend themselves to this optimization. To systematically answer this, analytical error and energy models are developed by exploiting the properties of the workloads. A framework called . is designed that uses these models
板凳
發(fā)表于 2025-3-22 02:44:23 | 只看該作者
: Constrained-Optimization- Based Parallelization of Irregular Workloads for Multicore Processors,CPUs is challenging due to the irregularity of the underlying computational dataflow graphs. For efficient execution of these graphs, high workload balance and minimal communication and synchronization overheads need to be achieved, in the presence of dataflow graph’s irregularity..To this end, this
地板
發(fā)表于 2025-3-22 07:06:41 | 只看該作者
DAG Processing Unit Version 1 (DPU): Efficient Execution of Irregular Workloads on a Multicore ProcCPUs and GPUs despite highly optimized software parallelization, resulting in severe underutilization of the hardware. This chapter discusses the first version of DAG processing unit (DPU), a specialized processor that addresses the limitations of existing hardware, enabling efficient execution of i
5#
發(fā)表于 2025-3-22 11:51:49 | 只看該作者
6#
發(fā)表于 2025-3-22 13:20:07 | 只看該作者
g set of AI workloads that rely on sparse matrix operations .This book focuses on the acceleration of emerging irregular sparse workloads, posed by novel artificial intelligent (AI) models and sparse linear algebra. Specifically, the book outlines several co-optimized hardware-software solutions for
7#
發(fā)表于 2025-3-22 17:59:10 | 只看該作者
8#
發(fā)表于 2025-3-22 21:14:29 | 只看該作者
https://doi.org/10.1007/978-3-662-00283-4optimal architecture configuration that minimizes the energy-delay product. This hardware-software co-optimization approach results in a speedup of 1.4×, 3.5×, and 14× over the first version of DPU, a CPU, and a GPU, respectively, while also achieving a lower energy-delay product.
9#
發(fā)表于 2025-3-23 05:08:41 | 只看該作者
DAG Processing Unit Version 2 (DPU-v2): Efficient Execution of Irregular Workloads on a Spatial Datoptimal architecture configuration that minimizes the energy-delay product. This hardware-software co-optimization approach results in a speedup of 1.4×, 3.5×, and 14× over the first version of DPU, a CPU, and a GPU, respectively, while also achieving a lower energy-delay product.
10#
發(fā)表于 2025-3-23 07:18:38 | 只看該作者
,Besuch im künstlichen Paradies,mization solvers, . combines the solver with several heuristics that can handle dataflow graphs with millions of nodes without sacrificing the quality of parallelization. Experiments on a multicore CPU show a speedup of 2.0× over existing libraries.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 21:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宁都县| 海阳市| 竹山县| 家居| 凤庆县| 启东市| 乐至县| 乌拉特前旗| 达拉特旗| 江西省| 贺兰县| 梅河口市| 柘城县| 武城县| 泗水县| 荔浦县| 噶尔县| 泸西县| 海淀区| 临西县| 兴隆县| 皮山县| 丹寨县| 海丰县| 新干县| 孙吴县| 健康| 罗源县| 收藏| 云梦县| 务川| 胶州市| 手机| 凤冈县| 阿城市| 遂川县| 台山市| 色达县| 河间市| 巴林右旗| 自治县|