找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Effective Statistical Learning Methods for Actuaries I; GLMs and Extensions Michel Denuit,Donatien Hainaut,Julien Trufin Textbook 2019 Spri

[復(fù)制鏈接]
查看: 52615|回復(fù): 45
樓主
發(fā)表于 2025-3-21 20:08:34 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Effective Statistical Learning Methods for Actuaries I
副標題GLMs and Extensions
編輯Michel Denuit,Donatien Hainaut,Julien Trufin
視頻videohttp://file.papertrans.cn/303/302810/302810.mp4
概述Features numerous examples and case studies in P&C, Life and Health insurance.Provides a broad and self-contained presentation of insurance data analytics techniques, from classical GLMs to neural net
叢書名稱Springer Actuarial
圖書封面Titlebook: Effective Statistical Learning Methods for Actuaries I; GLMs and Extensions Michel Denuit,Donatien Hainaut,Julien Trufin Textbook 2019 Spri
描述.This book summarizes the state of the art in generalized linear models (GLMs) and their various extensions: GAMs, mixed models and credibility, and some nonlinear variants (GNMs). In order to deal with tail events, analytical tools from Extreme Value Theory are presented. Going beyond mean modeling, it considers volatility modeling (double GLMs) and the general modeling of location, scale and shape parameters (GAMLSS). Actuaries need these advanced analytical tools to turn the massive data sets now at their disposal into opportunities.. .The exposition alternates between methodological aspects and case studies, providing numerical illustrations using the R statistical software. The technical prerequisites are kept at a reasonable level in order to reach a broad readership. ..This is the first of three volumes entitled .Effective Statistical Learning Methods for Actuaries.. Written by actuaries for actuaries, this series offers a comprehensive overview of insurance data analytics with applications to P&C, life and health insurance. Although closely related to the other two volumes, this volume can be read independently..
出版日期Textbook 2019
關(guān)鍵詞Insurance risk classification; Supervised learning; Exponential dispersion model; Regression analysis; G
版次1
doihttps://doi.org/10.1007/978-3-030-25820-7
isbn_softcover978-3-030-25819-1
isbn_ebook978-3-030-25820-7Series ISSN 2523-3262 Series E-ISSN 2523-3270
issn_series 2523-3262
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

書目名稱Effective Statistical Learning Methods for Actuaries I影響因子(影響力)




書目名稱Effective Statistical Learning Methods for Actuaries I影響因子(影響力)學科排名




書目名稱Effective Statistical Learning Methods for Actuaries I網(wǎng)絡(luò)公開度




書目名稱Effective Statistical Learning Methods for Actuaries I網(wǎng)絡(luò)公開度學科排名




書目名稱Effective Statistical Learning Methods for Actuaries I被引頻次




書目名稱Effective Statistical Learning Methods for Actuaries I被引頻次學科排名




書目名稱Effective Statistical Learning Methods for Actuaries I年度引用




書目名稱Effective Statistical Learning Methods for Actuaries I年度引用學科排名




書目名稱Effective Statistical Learning Methods for Actuaries I讀者反饋




書目名稱Effective Statistical Learning Methods for Actuaries I讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:14:10 | 只看該作者
Exponential Dispersion (ED) Distributionsques. The objective functions used to calibrate the regression models described in this book correspond to log-likelihoods taken from this family. This is why a good knowledge of these models is the necessary prerequisite to the next chapters, in order to understand which objective function to use a
板凳
發(fā)表于 2025-3-22 01:31:47 | 只看該作者
Maximum Likelihood Estimationors enjoy convenient theoretical properties, being optimal in a wide variety of situations. The maximum likelihood principle will be used throughout the next chapters to fit the supervised learning models.
地板
發(fā)表于 2025-3-22 04:49:43 | 只看該作者
5#
發(fā)表于 2025-3-22 12:37:58 | 只看該作者
Over-Dispersion, Credibility Adjustments, Mixed Models, and Regularizationy results in correlation among the responses within the same group, casting doubts about the outputs of analyses assuming mutual independence. Random effects offer a convenient way to model such grouping structure. This chapter presents the Generalized Linear Mixed Model (GLMM) approach to regressio
6#
發(fā)表于 2025-3-22 13:43:33 | 只看該作者
Generalized Additive Models (GAMs)eatures coded by means of binary variables. However, this assumption becomes questionable for continuous features which may have a nonlinear effect on the score scale. This chapter is devoted to Generalized Additive Models (GAMs) which keep the additive decomposition of the score but allow the actua
7#
發(fā)表于 2025-3-22 17:59:37 | 只看該作者
Beyond Mean Modeling: Double GLMs and GAMs for Location, Scale and Shape (GAMLSS)ion, scale, shape or probability mass at the origin, for instance. This allows the actuary to let the available information enter other dimensions of the response, such as volatility or no-claim probability. The double GLM setting supplements GLMs with dispersion modeling, letting the dispersion par
8#
發(fā)表于 2025-3-22 22:29:42 | 只看該作者
Some Generalized Non-linear Models (GNMs) to be learned from the data. GAMs can be fitted with the help of local versions of GLMs or by decomposing the nonlinear effects of the features in an appropriate spline basis so that the working scores are also linear functions of the regression parameters. In this chapter, models with a score invo
9#
發(fā)表于 2025-3-23 03:39:31 | 只看該作者
Extreme Value Modelstions, with a particular emphasis on large claims in property and casualty insurance and mortality at oldest ages in life insurance. Large claims generally affect liability coverages and require a separate analysis. The reason for a separate analysis of small or moderate losses (also referred to as
10#
發(fā)表于 2025-3-23 06:54:27 | 只看該作者
Over-Dispersion, Credibility Adjustments, Mixed Models, and Regularizationn analysis. In this framework, random effects are added on the same scale as the linear combination of the available features (called fixed effects). Predictive distributions, that is, conditional distribution of the response given past experience, are particularly attractive to re-valuate future premiums based on claims observed previously.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-27 01:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
辛集市| 民和| 武定县| 勐海县| 晋中市| 嫩江县| 吴旗县| 光泽县| 偃师市| 南安市| 扎赉特旗| 通河县| 徐州市| 临汾市| 嘉峪关市| 施秉县| 大悟县| 长海县| 永平县| 安乡县| 交城县| 长宁县| 永康市| 类乌齐县| 江安县| 彩票| 南昌县| 农安县| 修文县| 闵行区| 遂宁市| 友谊县| 德安县| 舞阳县| 彭州市| 平安县| 名山县| 沅陵县| 大英县| 神农架林区| 安陆市|