找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Edge Intelligence; From Theory to Pract Javid Taheri,Schahram Dustdar,Shuiguang Deng Textbook 2023 The Editor(s) (if applicable) and The Au

[復(fù)制鏈接]
查看: 8205|回復(fù): 39
樓主
發(fā)表于 2025-3-21 19:58:26 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Edge Intelligence
副標題From Theory to Pract
編輯Javid Taheri,Schahram Dustdar,Shuiguang Deng
視頻videohttp://file.papertrans.cn/303/302239/302239.mp4
概述Ideally suited for lecturing Edge Computing and its ties to AI and ML approaches.Starts from basics and advances, step-by-step, to ways how AI/ML concepts can benefit from Edge Computing platforms.Com
圖書封面Titlebook: Edge Intelligence; From Theory to Pract Javid Taheri,Schahram Dustdar,Shuiguang Deng Textbook 2023 The Editor(s) (if applicable) and The Au
描述.This graduate-level textbook is ideally suited for lecturing the most relevant topics of Edge Computing and its ties to Artificial Intelligence (AI) and Machine Learning (ML) approaches. It starts from basics and gradually advances, step-by-step, to ways AI/ML concepts can help or benefit from Edge Computing platforms. .The book is structured into seven chapters; each comes with its own dedicated set of teaching materials (practical skills, demonstration videos, questions, lab assignments, etc.). Chapter 1 opens the book and comprehensively introduces the concept of distributed computing continuum systems that led to the creation of Edge Computing. Chapter 2 motivates the use of container technologies and how they are used to implement programmable edge computing platforms. Chapter 3 introduces ways to employ AI/ML approaches to optimize service lifecycles at the edge. Chapter 4 goes deeper in the use of AI/ML and introduces ways to optimize spreading computational tasks alongedge computing platforms. Chapter 5 introduces AI/ML pipelines to efficiently process generated data on the edge. Chapter 6 introduces ways to implement AI/ML systems on the edge and ways to deal with their t
出版日期Textbook 2023
關(guān)鍵詞Edge Computing; Cloud Computing; Distributed Computing; Machine Learning; System Performance; Kubernetes
版次1
doihttps://doi.org/10.1007/978-3-031-22155-2
isbn_softcover978-3-031-22154-5
isbn_ebook978-3-031-22155-2
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Edge Intelligence影響因子(影響力)




書目名稱Edge Intelligence影響因子(影響力)學(xué)科排名




書目名稱Edge Intelligence網(wǎng)絡(luò)公開度




書目名稱Edge Intelligence網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Edge Intelligence被引頻次




書目名稱Edge Intelligence被引頻次學(xué)科排名




書目名稱Edge Intelligence年度引用




書目名稱Edge Intelligence年度引用學(xué)科排名




書目名稱Edge Intelligence讀者反饋




書目名稱Edge Intelligence讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:30:30 | 只看該作者
Containerized Edge Computing Platforms,ighting container use case scenarios. We review what a container engine is and what alternatives are available in the market. We also provide details on automated container management processes that free operators from tasks such as re-creating and scaling containers. We also elaborate how container
板凳
發(fā)表于 2025-3-22 03:29:42 | 只看該作者
地板
發(fā)表于 2025-3-22 07:10:28 | 只看該作者
AI/ML for Computation Offloading,th the aim to resolve latency and bandwidth bottlenecks. Edge computing brings computation closer to end users for improving network stability, as well as enabling task offloading for device terminals. Because designing efficient offloading mechanisms is complicated, due to their stringent real-time
5#
發(fā)表于 2025-3-22 09:36:33 | 只看該作者
AI/ML Data Pipelines for Edge-Cloud Architectures,ear added values into business scenarios. We will motivate how high-speed inter-regional networks and Internet of Things (IoT) devices enabled data processing in the edge-tier network as an effective solution for real-time processing of raw data produced by IoT devices. We will also elaborate on how
6#
發(fā)表于 2025-3-22 16:04:03 | 只看該作者
AI/ML on Edge,(caching, training, inference, and offloading) of edge intelligence, we first give a fundamental introduction to core concepts and analyze their current inevitable development processes. We will then focus on the overall workflow and architecture of the intelligent edge system and present general di
7#
發(fā)表于 2025-3-22 18:41:26 | 只看該作者
AI/ML for Service-Level Objectives,providers to define complex, high-level SLOs in an orchestrator-independent manner. SLO Scripts are created and introduced because most approaches focus on low-level SLOs that are closely related to resources (e.g., average CPU or memory usage) and thus are usually bound to specific elasticity contr
8#
發(fā)表于 2025-3-22 21:23:29 | 只看該作者
9#
發(fā)表于 2025-3-23 02:48:21 | 只看該作者
Roland Benedikter,Verena Nowotnyge computing platforms. Elaborating on how AI/ML technologies can deliver more accurate offloading strategies while lowering the computing decision-making costs, we will cover long-term optimization and Markov decision optimization for binary offloading, partial offloading, and complex jobs’ offloading problems.
10#
發(fā)表于 2025-3-23 05:50:41 | 只看該作者
AI/ML for Computation Offloading,ge computing platforms. Elaborating on how AI/ML technologies can deliver more accurate offloading strategies while lowering the computing decision-making costs, we will cover long-term optimization and Markov decision optimization for binary offloading, partial offloading, and complex jobs’ offloading problems.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-27 19:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
彭州市| 乌恰县| 呼伦贝尔市| 邢台市| 灵川县| 临沂市| 桦南县| 聂拉木县| 阳高县| 溧水县| 界首市| 延长县| 成都市| 云梦县| 仙桃市| 海宁市| 东乡| 萨嘎县| 蓬莱市| 石楼县| 桃园市| 乐至县| 安溪县| 夹江县| 长春市| 芒康县| 伊金霍洛旗| 桂阳县| 三江| 青岛市| 桃园县| 泽州县| 金门县| 溧水县| 广汉市| 平南县| 定结县| 崇左市| 定陶县| 自贡市| 徐州市|