找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Eddy Current Approximation of Maxwell Equations; Theory, Algorithms a Ana Alonso Rodríguez,Alberto Valli Book 2010 Springer-Verlag Milan 20

[復(fù)制鏈接]
樓主: cobble
21#
發(fā)表于 2025-3-25 05:41:08 | 只看該作者
Existence and uniqueness of the solution,ríguez et al. [11], we mainly focus on the magnetic boundary value problem (1.22), adding in Section 3.5 a few comments on the electric boundary value problem(1.20) and the no-flux boundary value problem (1.24).
22#
發(fā)表于 2025-3-25 08:39:46 | 只看該作者
Hybrid formulations for the electric and magnetic fields,ar potential, the latter being used only in the conducting region, or on the use of a magnetic scalar potential in the insulating region (see, e.g., Jackson [137], Silvester and Ferrari [227]). We present these formulations in Chapters 6 and 5 respectively.
23#
發(fā)表于 2025-3-25 12:44:39 | 只看該作者
24#
發(fā)表于 2025-3-25 18:49:36 | 只看該作者
https://doi.org/10.1007/978-3-642-92887-1In this chapter, starting from the classical Maxwell equations, we describe and motivate the problem we are going to consider.
25#
發(fā)表于 2025-3-25 20:00:53 | 只看該作者
Verdampfen, Destillieren und Sublimieren,As we have already remarked in the preceding chapters, a specific feature of eddy current problems is the presence of differential constraints acting in the non-conducting part of the domain: namely, curl .=. in Ω. and div (ε.)=0 in Ω
26#
發(fā)表于 2025-3-26 00:11:39 | 只看該作者
Setting the problem,In this chapter, starting from the classical Maxwell equations, we describe and motivate the problem we are going to consider.
27#
發(fā)表于 2025-3-26 04:40:43 | 只看該作者
Formulations via scalar potentials,As we have already remarked in the preceding chapters, a specific feature of eddy current problems is the presence of differential constraints acting in the non-conducting part of the domain: namely, curl .=. in Ω. and div (ε.)=0 in Ω
28#
發(fā)表于 2025-3-26 11:39:34 | 只看該作者
29#
發(fā)表于 2025-3-26 14:03:23 | 只看該作者
30#
發(fā)表于 2025-3-26 17:10:30 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 02:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
白银市| 栖霞市| 波密县| 商丘市| 库尔勒市| 绥化市| 绥江县| 利辛县| 湘潭市| 内乡县| 布尔津县| 临夏市| 阜阳市| 东辽县| 宜春市| 慈溪市| 浦北县| 沧州市| 察雅县| 治县。| 乐平市| 灵武市| 顺昌县| 水富县| 新平| 进贤县| 遵义县| 达拉特旗| 广汉市| 桦川县| 苗栗县| 磐石市| 平舆县| 鄂尔多斯市| 大姚县| 新疆| 上犹县| 镇远县| 申扎县| 旅游| 肃北|